Studies of gamma-ray and neutron induced reactions with an active-target Time Projection Chamber

Zenon Janas

Nuclear Physics Division University of Warsaw

14 October 2021

Nucleosynthesis in stars

• H - burning reactions

 $\left. \begin{array}{c} pp - chain \\ CNO cycle \end{array} \right\} \quad 4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu$

• He - burning reactions $3\alpha \rightarrow {}^{12}C$ ${}^{12}C(\alpha, \gamma){}^{16}O$ ${}^{16}O(\alpha, \gamma){}^{20}Ne$

. . .

Significance of the ¹²C(α , γ)¹⁶O reaction

- determines C/O at the end of He burning
- important in evolution of low mass stars into SN Ia
- important in evolution of massive stars into SN II
- influences the gap in black-hole mass distribution

R. Farmer, Astroph. J. Lett. 902(2020)L36

Mechanism of ${}^{12}C(\alpha, \gamma)$ reaction

• experimental data needed to constrain model parameters

Gamow window for astrophysical reactions

C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos

Astrophysical S-factor

R.J. deBoer et al, Rev. Mod. Phys. 89 (2017)

S-factor for ¹²C(α , γ_0)¹⁶O reaction

S(1 MeV) = (40 \pm 10) keV·b σ = 50 pb

S(300 keV) = (140 \pm 20) keV·b σ = 0.03 fb

Nacre II, Y. Xu et al., Nuclear Physics A 918 (2013)

Studies of ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction

Target: ¹²C implanted in gold Density: $2 \cdot 10^{18}$ atoms/cm² Beam: 400 μ A Detectors: Ge + BGO Time: 6 days E_{cm}= 1.274 MeV σ = 0.3 nb

Problems

- background ${}^{13}C(\alpha, n)$
- target deterioration
- uncertain beam energy

R. Kunz et al., Phys. Rev. Lett. 86(2001)3244

Alternative approach to ${}^{12}C(\alpha, \gamma){}^{16}O$

- study of time-reverse ${}^{16}O(\gamma, \alpha){}^{12}C$ reaction
- use principle of detailed balance

 $A(a, b)B \iff B(b, a)A$

$$\sigma_{ab} = \frac{(2J_B + 1)(2J_b + 1)}{(2J_A + 1)(2J_a + 1)} \cdot \frac{p_{Aa}^2}{p_{Bb}^2} \cdot \sigma_{ba}$$

for

$${}^{12}C(\alpha,\gamma)^{16}O \iff {}^{16}O(\gamma,\alpha)^{12}C$$
$$\sigma_{\alpha\gamma}(E_{\alpha}=1 \text{ MeV}) = \frac{1}{85} \cdot \sigma_{\gamma\alpha}(E_{\gamma}=8.16 \text{ MeV})$$

Requirements for ¹⁶O(γ , α)¹²C studies

- high intensity, monochromatic gamma beam
- proper detector / target
 - high efficiency
 - low background
 - low energy threshold
 - possibility to measure angular distribution

Solution

Active Target Time Projection Chamber

Requirements for ¹⁶O(γ , α)¹²C studies

• high intensity, monochromatic gamma beam

Extreme Light Infrastructure - Nuclear Physics Magurele-Romania

Extreme Light Infrastructure - Nuclear Physics Magurele-Romania

- Compton backscattering of light on electron beam
 - laser beam: 500 / 1000 nm
 - electron beam: 234 742 MeV
 - E_{γ} = 1 20 MeV, $\Delta E/E$ = 0.5%
 - Intensity: $10^8 \gamma/s$

Optical Time Projection Chamber

K. Miernik et al., NIM A581 (2007) 194

Idea of track reconstruction

Reconstruction of 2p decay ⁴⁸Ni

M. Pomorski et al., PRC 90 (14) 014311

Multi - fragmentation of ⁴⁰Ar seen in OTPC

Time Projection Chamber with electronic readout

Active volume:

- 33 x 20 cm² x 20 cm (drift)
- gas pressure 80-250 mbar

Charge amplification

three GFM foils

- 1000 channels
- GET electronics

Readout electrode of eTPC

3 grids of strips – crossed at 60° :

- 1.5 mm strip pitch
- U-V-W strip arrays on XY plane

8-layer PCB, 4.2 mm-thick

S. Bachmann et al., NIMA 478 (2002) 104 V. Ableev et al., NIMA 535 (2004) 294

Readout electronics

Time Projection Chamber

Time Projection Chamber at FUW

Test of TPC at IFJ PAN Van de Graaff accelarator

Idea

- produce 13 MeV gammas in ${}^{15}N(p, \gamma){}^{16}O$ reaction
- observe ${}^{16}O(\gamma, \alpha){}^{12}C$ in TPC

Goals

- test TPC in-beam
- measure ${}^{16}O(\gamma, \alpha){}^{12}C$ reaction cross-section at 13 MeV
- \bullet measure angular distribution of $\,\alpha\text{-particles}$
- test discrimination of ${}^{16}O(\gamma, \alpha){}^{12}C$ and ${}^{18}O(\gamma, \alpha){}^{14}C$ events
- test logistics

¹⁵N(p, γ)¹⁶O reaction

Cross section of ${}^{15}N(p, \gamma_0) {}^{16}O$ reaction

TPC at VdG

Example of ¹⁶O(γ , α)¹²C reaction

Reconstruction of ¹⁶O(γ , α)¹²C event

 E_{α} = 4.37 MeV E_{12C} = 1.46 MeV $\theta_{\alpha-12C}$ = 180°

Neutron generator at IGN-14

 $d + T \rightarrow \alpha$ (3.5MeV) + n(14.1MeV)

Yield: 5×10^8 n/s in 4π

Synthesis of ¹²C in 3-alpha reaction

• Step I

$$\alpha + \alpha \iff {}^{8}\text{Be}$$

 ${}^{8}\text{Be} : {}^{4}\text{He} = 10^{-10}$

• Step II

 $\alpha + {}^{8}\text{Be} \rightarrow {}^{12}\text{C} + \gamma$

Decay of the Hoyle state – no influence of environment

Deexcitation of the Hoyle state in high density neutron environment

M. Beard, Phys. Rev. Lett. 119(2017)112701

Enhancement factor $R = \Gamma_{n'n} / \Gamma_{rad}$

M. Beard, Phys. Rev. Lett. 119(2017)112701

¹²C(n, n') cross section $\langle \sigma v \rangle_{nn'} = \left(\frac{8}{\pi\mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{-3/2} \int_0^\infty E' \sigma_{n,n'}(E') \exp(-E'/kT) dE'.$ 1000 gs→2⁺ 100 $gs \rightarrow HS$ at 14 MeV σ_{nn'} (mb) H-F 19 mb gs→HS Takahashi 8 (2) mb 10 Kondo 8 mb **Cross sections** calculated within 1 2⁺→HS a factor 2-3

20

25

30

0

5

10

15

E_n (MeV)

TPC at IGN-14

¹²C+n and ¹⁶O+n reaction channels

$$n + {}^{12}C \rightarrow {}^{13}C^* \rightarrow \alpha + {}^{9}Be$$
 70 mb
 $n + {}^{16}O \rightarrow {}^{17}O^* \rightarrow \alpha + {}^{13}C$ 150 mb

Example of ¹²C(n, α)⁹Be reaction

Event-289: Raw signals from W strips

Example of ${}^{12}C(n, n'){}^{12}C$ reaction

Time bin [arb.u.]

Event-19: Raw signals from V strips

-700

18

Example of ¹²C(n, n')¹²C^{HS} reaction

Event-903: Raw signals from V strips V strip direction [mm] 10² 140 120 10 100 80 60 -80 -70 -60 -50 -40 -30 -20 -10 0

Drift direction [mm]

Reconstructed excitation energy of ¹²C

Outlook

- studies of ${}^{16}O(\gamma, \alpha){}^{12}C$ and ${}^{12}C(\gamma, 3\alpha)$ reactions at:
 - High Intensity Gamma Source (USA)
 - Exteme Light Infrastructure Nuclear Physics (Romania)
- studies of ${}^{12}C(n, n')$ reaction at:
 - MONNET Geel (Belgium)

Collaboration

FUW UW Warszawa

M. Ćwiok W. Dominik M. Fila (PhD) A. Kalinowski M. Kuich M. Zaremba

- A. Fijałkowska
- A. Giska (PhD)
- Z. Janas
- C. Mazzocchi

IFJ PAN Kraków

- VdG group
 - J. Lekki Z. Szklarz
 - T. Pieprzyca

- IGN-14 group
 - D. Grządziel
 - W. Janik
 - W. Królas A. Kulińska
 - A. Kurowski

- M. Scholz
- M. Turzański
- U. Wiącek
- U. Woźnicka

Acknowledgements

This work was supported by:

- the Polish Ministry of Science and Higher Education from the funds for years 2019-2021 dedicated to implement the international co-funded project no. 4087/ELI-NP/2018/0,
- the University of Connecticut under the Collaborative Research Contract no. UConn-LNS UW/7/2018 and
- the National Science Centre, Poland, under Contract no. UMO-2019/33/B/ST2/02176.