CP violation in electroweak interactions of heavy flavours

An overview

Wojciech Wiślicki National Centre for Nuclear Research

ŚWIERK

Faculty of Physics UW, 9 Mar 2023

What C, P and T do, and the concept of antimatter

Action of operators

$$\begin{split} \mathsf{C} |\overrightarrow{\mathsf{r}},\mathsf{t},\mathsf{q}\rangle_{\mathsf{in}} &= \mathsf{e}^{\mathsf{i}\beta} |\overrightarrow{\mathsf{r}},\mathsf{t},-\mathsf{q}\rangle_{\mathsf{in}} \\ \mathsf{P} |\overrightarrow{\mathsf{r}},\mathsf{t},\mathsf{q}\rangle_{\mathsf{in}} &= \mathsf{e}^{\mathsf{i}\alpha} |-\overrightarrow{\mathsf{r}},\mathsf{t},\mathsf{q}\rangle_{\mathsf{in}} \\ \mathsf{T} |\overrightarrow{\mathsf{r}},\mathsf{t},\mathsf{q}\rangle_{\mathsf{in}} &= \mathsf{e}^{\mathsf{i}\gamma}_{\mathsf{out}} \langle \overrightarrow{\mathsf{r}},-\mathsf{t},\mathsf{q} | \end{split}$$

Important remarks

Sole C cannot give a correct relativistic picture; e.g. cannot be left-handed neutrino \rightarrow left-handed anti-neutrino

One needs to combine with P

In the Standard Model

- **CPT is conserved**: famous theorem
- CP does not have to be conserved; room for CP violation
- CP violation so far observed only in weak interactions of heavy quarks s, c and b:
- s: 10⁻³, discovered long time ago
- c: 10⁻⁴, only recently
- b: 10⁻², some time ago
- No evidence in leptonic sector (2-3 σ effect in neutrino oscillations)
- Lack of CP violation in strong interactions; not understood theoretically

CP violation and Cabibbo-Kobayashi-Maskawa matrix

$$\mathcal{L}_{\mathsf{qW}} = - rac{\mathrm{e}}{2} \mathsf{U}_{\mathsf{L}}^{\dagger} \, \gamma^{\mu} \, \mathbf{V}_{\mathsf{CKM}} \, \mathsf{D}_{\mathsf{L}} \mathsf{W}_{\mu}$$

CKM matrix describes mixing between mass- and weak eigenstates of down-type quarks

Wolfenstein parametrization; non-zero complex phase induces CPV

 $\mathbf{A}_{ub} \neq \mathbf{CP}(\mathbf{A}_{ub}) = \mathbf{A}_{ub}^{*}$

$$\mathrm{V}_{\mathsf{CKM}} = \begin{bmatrix} \mathsf{V}_{\mathsf{ud}} & \mathsf{V}_{\mathsf{us}} & \mathsf{V}_{\mathsf{ub}} \\ \mathsf{V}_{\mathsf{cd}} & \mathsf{V}_{\mathsf{cs}} & \mathsf{V}_{\mathsf{cb}} \\ \mathsf{V}_{\mathsf{td}} & \mathsf{V}_{\mathsf{ts}} & \mathsf{V}_{\mathsf{tb}} \end{bmatrix} \simeq$$

$$\begin{bmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3 e^{i\varphi} \\ -\lambda & 1 - \lambda^2/2 & \lambda^2 \\ -\lambda^3 e^{-i\varphi} & -\lambda^2 & 1 \end{bmatrix}$$

 ${
m e}^{{
m i}arphi}=
ho-{
m i}\eta,~~\lambda=0.22$

CP violation and CKM

In SM, CKM has to be unitary

$${\sf V}_{\sf CKM}\cdot{\sf V}^{\dagger}_{\sf CKM}=1$$

Magnitude of CP violation seen as openness of unitarity triangle (e.g. γ)

CPV can be estimated from measurements of CKM elements in various decays, not necessarily referring directly to CPV observables

CP violation processes: tree decays

W does not carry color, no gluon exchange required; called **colour-favoured**

Quark from W decay needs to pick-up another one not being his partner from W decay, and form a colour singlet; called **colour-suppressed**

Colour-suppressed have smaller branching fractions

CP violation processes: loop (penguin) decays

Similar distinction between electroweak (a) and gluonic (b) loop processes

Loops enable transitions between up \rightarrow up' and down \rightarrow down' quarks, suppressed in tree processes (FCNC)

CP violating processes: box diagrams

Transitions with Δ F=2: flavour-antiflavour oscillations

Note heaviest flavours can be exchanged in loops;

 \rightarrow sensitivity to t-quark couplings, hardly available in trees due to energy

CP violation and CKM

Typical contributors to CKM triangle edges and angles

 $B \rightarrow D \mu \nu_{\mu}$

Phenomenology of CPV in decays and mixing

Decay amplitudes: transitions with Δ F=1

Mixing of flavour eigenstates in mass eigenstates: transitions with $\Delta F=2$

$$\begin{array}{ll} |\mathsf{M}_{\mathsf{H}}\rangle & \sim & \mathsf{p}|\mathsf{M}^{0}\rangle + \mathsf{q}|\bar{\mathsf{M}}^{0}\rangle \\ |\mathsf{M}_{\mathsf{L}}\rangle & \sim & \mathsf{p}|\mathsf{M}^{0}\rangle - \mathsf{q}|\bar{\mathsf{M}}^{0}\rangle \end{array}$$

CP violation: decays, mixing, interference

Direct $\Delta F = 1$: $|A_f| \neq |\overline{A}_{\overline{f}}|$

Mixing $\Delta F = 2$: $p \neq q$

Interference: Arg $\lambda \neq 0$, where $\lambda = \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{\bar{A}_{f}}$

Interference only for common final states

CP violation: decays

CP violation defined by $|{f A}_f/ar{f A}_{ar{f}}|
eq 1$

The only possible mechanism of CP violation in charged mesons and baryons; mixing absent there

Basic experimental observable: **CP asymmetry**

$$\begin{split} \mathcal{A}_{CP} &= \ \frac{\Gamma(\mathsf{M}^- \to \mathsf{f}^+) - \Gamma(\mathsf{M}^+ \to \mathsf{f}^-)}{\Gamma(\mathsf{M}^- \to \mathsf{f}^+) + \Gamma(\mathsf{M}^+ \to \mathsf{f}^-)} \\ &= \ \frac{|\bar{\mathsf{A}}_{\mathsf{f}^-}/\mathsf{A}_{\mathsf{f}^+}| - 1}{|\bar{\mathsf{A}}_{\mathsf{f}^-}/\mathsf{A}_{\mathsf{f}^+}| + 1} \end{split}$$

CP violation: flavour oscillations

CP violation defined by
$$|\mathbf{q}/\mathbf{p}| \neq \mathbf{1}$$
 Mass and width eigenstates
Time evolution governed by $\mathbf{x} = \frac{\mathbf{m}_{H} - \mathbf{m}_{L}}{\Gamma}$ $\mathbf{y} = \frac{\Gamma_{H} - \Gamma_{L}}{\Gamma}$

Time-dependent oscillation probability

$$\mathsf{P}(\mathsf{M}^0 \to \bar{\mathsf{M}}^0) = \left| \frac{q}{p} \right|^2 \frac{e^{-\Gamma t}}{2} [\cosh(\mathsf{y} \mathsf{\Gamma} \mathsf{t}) - \cos(\mathsf{x} \mathsf{\Gamma} \mathsf{t})]$$

 $\Gamma = (\Gamma_{\rm H} + \Gamma_{\rm L})/2$

CP violation: flavour oscillations

Note differences between oscillation rates of flavors

System	x	у
$K^0 - \overline{K}^0$	-0.946 ± 0.004	0.99650 ± 0.00001
$D^0 - \overline{D}^0$	$(4.09^{+0.48}_{-0.49}) \times 10^{-3}$	$(6.15^{+0.56}_{-0.55}) \times 10^{-3}$
$B^0 - \overline{B}^0$	-0.769 ± 0.004	$(0.1 \pm 0.1) \times 10^{-2}$
$B_s^0 - \bar{B}_s^0$	26.89 ± 0.07	$(12.9 \pm 0.6) \times 10^{-2}$

Very small x and y for D

Large x for B_{S}

CP violation: flavour oscillations

Wrong-sign asymmetries due to oscillations

Semi-leptonic, charged-current tree decays, e.g. ${\rm B}^0 \to {\rm D}^- \mu^+ \nu_\mu$ CP conserved

$$|\mathsf{A}_{\mu^+}| = |ar{\mathsf{A}}_{\mu^-}|, \quad |\mathsf{A}_{\mu^-}| = |ar{\mathsf{A}}_{\mu^+}| = 0$$

Due to oscillations, CP is violated and measured with "wrong-sign" asymmetry

$$\begin{split} \mathcal{A}_{\mathsf{s}-\mathsf{l}}(\mathsf{t}) &= \quad \frac{\mathsf{d}\Gamma/\mathsf{d}\mathsf{t}(\mathsf{B}^0 \to \mu^-\mathsf{X}) - \mathsf{d}\Gamma/\mathsf{d}\mathsf{t}(\bar{\mathsf{B}}^0 \to \mu^+\mathsf{X})}{\mathsf{d}\Gamma/\mathsf{d}\mathsf{t}(\mathsf{B}^0 \to \mu^-\mathsf{X}) + \mathsf{d}\Gamma/\mathsf{d}\mathsf{t}(\bar{\mathsf{B}}^0 \to \mu^+\mathsf{X})} \\ &= \quad \frac{1 - |\mathsf{q}/\mathsf{p}|^4}{1 + |\mathsf{q}/\mathsf{p}|^4} \end{split}$$

CP violation: mixing-decay interference

Interference between decay without mxing and decay with mixing Only for same final state for meson and anti-meson decay

CPV defined by

$$\operatorname{Arg}(\lambda_{\mathrm{f}}) + \operatorname{Arg}(\lambda_{\overline{\mathrm{f}}}) \neq 0, \quad \lambda_{\mathrm{f}} = \frac{q}{p} \overline{\mathrm{A}}_{\mathrm{f}} \mathrm{A}_{\mathrm{f}}$$

For f_{CP} being CP-eigenstates simplifies to

$$\Im(\lambda_{\mathsf{f}_{\mathsf{CP}}})
eq \mathbf{0}$$

CPV measured with the same type of time-dependent asymmetry as s-l

Strange realm: kaons

Historically, 1964 discovery of CPV in $K^0 \rightarrow \pi \pi$

Decays into 2 $\pi\,$ observed far away of the production target, where all $K_{\rm S}$ should die out

Later experiments (lots of them)

Two amplitude ratios (with phases) measured for charged and neutral modes

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- |\mathsf{H}|\mathsf{K}_{\mathsf{L}} \rangle}{\langle \pi^+ \pi^- |\mathsf{H}|\mathsf{K}_{\mathsf{S}} \rangle} = (2.23 \pm 0.01) \times 10^{-3} \,\mathrm{e}^{\mathrm{i}(43.51 \pm 0.05)^\circ}$$
$$\eta_{00} = \frac{\langle \pi^0 \pi^0 |\mathsf{H}|\mathsf{K}_{\mathsf{L}} \rangle}{\langle \pi^0 \pi^0 |\mathsf{H}|\mathsf{K}_{\mathsf{S}} \rangle} = (2.22 \pm 0.01) \times 10^{-3} \,\mathrm{e}^{\mathrm{i}(43.52 \pm 0.05)^\circ}$$

Phases measured from shift in L-S interference pattern

Strange realm: kaons

Related to CP-violation parameters

$$\eta_{+-}=arepsilon+arepsilon'$$

 $\eta_{00}=arepsilon-2arepsilon'$

Today's world average

Most important experimental contributions are from late 1990's – early 2000's By NA48, KTeV, KLOE

Penguin, dominated

for new physics

by t in SM, clean probe

Strange realm: kaons

Among rare decays the most powerful $~{
m K_L}
ightarrow \pi^0
u ar
u$

In SM Branching fraction $\sim 10^{-11}$

Interference CP violation

$$rac{\Gamma(\mathsf{K_L} o \pi^0
u ar{
u})}{\Gamma(\mathsf{K}^+ o \pi^+
u ar{
u})} = 1 - \Re(\lambda_{\pi
u ar{
u}})$$

So far, NA62 provides

$$egin{aligned} \mathcal{B}(\mathsf{K_L} & o \pi^0
u ar{
u}) < 3 imes 10^{-9} \ \mathcal{B}(\mathsf{K^+} & o \pi^+
u ar{
u}) = (10.6^{+4.0}_{-3.4} \pm 0.9) imes 10^{-11} \end{aligned}$$

Charm realm: D

Standard Model predictions for CPV in charm is predicted to be tiny, $< O(10^{-3})$, but recently discovered by LHCb

$$\mathsf{D}^0 o \pi^+\pi^-, \hspace{1em} \mathsf{D}^0 o \mathsf{K}^+\mathsf{K}^-$$

Decays through Cabibbo-suppressed tree processes

CP asymmetries

Charm realm: D

Charm realm: D

Asymetries of $\pi \pi$ and KK determined separately and mixing subtracted; pure direct asymmetries are known; rather complex analysis procedure

Beauty realm: B, Bs

CP violation in pure **B mixing** best measured in semi-leptonic B decays

$$egin{aligned} \mathsf{A}^{ ext{d}}_{ ext{SL}} &= (-2.7 \pm 1.7) imes 10^{-3} \ \mathsf{A}^{ ext{s}}_{ ext{SL}} &= (-0.6 \pm 2.8) imes 10^{-3} \end{aligned}$$

SM predictions ~< 10⁻⁴ Experimental precision still needed

Beauty realm: B, Bs

Oscillations in hadronic decays and power of flavour tagging in LHCb

Usual efficiency of flavour tagging ~ few %

 $t \, [ps]$

Beauty realm: B, Bs

Summary on B_s rates (lifetimes)

All final states with 2c

Beauty realm: CP violation in B, B_s decays

Time-dependent asymmetries

CP-violating phase

$$A_f(t) = S_f \sin(\Delta m t) - C_f \cos(\Delta m t), \quad S_f = S_f'(\phi_s)$$

To be expressed by CKM

$$\mathbf{A}_{f} = (\mathbf{V}_{qb}\mathbf{V}_{qq'}^{*})\mathbf{t}_{f} + \sum_{q=u,c,t} (\mathbf{V}_{qb}\mathbf{V}_{qq'}^{*})\mathbf{p}_{f}$$

In SM

$$\phi_{\mathsf{S}} = -2 \operatorname{Arg}\left(rac{\mathsf{V}_{\mathsf{ts}}\mathsf{V}_{\mathsf{tb}}^{*}}{\mathsf{V}_{\mathsf{cs}}\mathsf{V}_{\mathsf{cb}}^{*}}
ight)$$

Phase sensitive to new physics and β

How much consistent are $\Delta \Gamma$ among LHC experiments?

$$rac{\mathsf{V}_{\mathsf{ud}}\mathsf{V}_{\mathsf{ub}}^*}{\mathsf{V}_{\mathsf{cd}}\mathsf{V}_{\mathsf{cb}}^*} = (1-rac{\lambda^2}{2})rac{1}{\lambda}rac{\mathsf{V}_{\mathsf{ub}}}{\mathsf{V}_{\mathsf{cb}}}$$

Accessible in tree processes (charged and neutral B-decays) and with impressively small theoretical uncertainties $|\sigma_{\gamma}| \leq 10^{-7}$ Brod, Zupan JHEP 01 (2014) 051

For interference to occur, **D** and $\overline{\mathbf{D}}$ have to decay to same final state, eg. $\mathbf{K}^+\mathbf{K}^-$, $\pi^+\pi^-$ etc.

Favourable for D decaying to CP-eigenstates

 $\Gamma \sim |1 + r_B e^{i(\delta_B \pm \gamma)}|^2$

Determination of γ possible with simultaneous fits to interfering decays of B-mesons and mixing in D-mesons; excellent opportunity to use rich array of data (151 observables in total, including other experiments)

$$\begin{split} & \Gamma(\mathsf{B}^{\pm} \to \mathsf{D}\mathsf{h}^{\pm}) = \Gamma(\gamma, \delta_\mathsf{B}, \delta_\mathsf{D}, \mathsf{x}, \mathsf{y}) \\ & \mathsf{x} = \frac{\Delta \mathsf{m}}{\bar{\mathsf{\Gamma}}} \qquad \mathsf{y} = \frac{\Delta \Gamma}{2\bar{\mathsf{\Gamma}}} \end{split}$$

 $\gamma = 65.4^{+3.8}_{-4.2}$ x = 0.400 $^{+0.052}_{-0.053}$ % y = 0.630 $^{+0.033}_{-0.030}$ %

Summary of CKM

 $\overline{\rho}$

What about lepton sector?

Expected as another source of CP violation in order to explain matter-antimatter disparity in Universe

Dynamics of lepton flavours exhibits analogies to quarks'; neutrinos' flavour oscillate

- \rightarrow there exist FCNC
- \rightarrow couplings of currents should mix

Pontecorvo-Maki-Nakagawa-Sakata matrix, analogous to Cabibbo-Kobyashi-Maskawa, relating flavour- to mass eigenstates

Should exist a CP-violating phase δ_{CP} in PMNS matrix Does not explain by itself antimatter deficit but makes plausible some models of leptogenesis (features havy partners to Majorana neutrinos)

Neutrinos: hard work and large hopes

 $\delta_{CP} = 0$: same $\nu_{e} - \nu_{\mu}$ and $\bar{\nu}_{e} - \bar{\nu}_{\mu}$ oscillations $\delta_{CP} \neq 0$: flavour-dependent oscillation rates, CP violation

 $\delta_{CP} = \pi/2$: maximal $\bar{\nu}$ enhancement $\delta_{CP} = -\pi/2$: maximal ν enhancement

Neutrinos – strong hint but still no evidence

T2K data, publ. Nature 2020

68.3% and 99.7% CLs for $\delta_{\rm CP}$ vs. $\theta_{\rm 13(23)}$

When averaged over all oscillation parameters, the δ_{CP} = 0 disfavored at 3 standard deviations

Still, for some values of mixing angles stays within 3 σ

Strong CP problem – a riddle

QCD with massive quarks allows for a non-zero P-violating parameter

$$\mathsf{L}_{\theta} = \theta \mathsf{g}^2 \mathsf{F}^{\mu\nu} \mathsf{F}_{\mu\nu}$$

Needed to parametrize U(1) breaking (axial anomaly)

But non-zero θ would have observable consequences; Non-zero neutron electric dipole moment the most pronounced $d_n = \theta \cdot 10^{-16} \text{ e}\cdot \text{cm}$

Best experimental constraint (PSI measurement, 2020) is

$$d_n = (0.0 \pm 1.1 \pm 0.2) \times 10^{-26} \; \mathrm{e} \cdot \mathrm{cm}$$

What makes it so fine tuned that $\theta \sim 10^{-10}$?

Concluding remarks

- CPV for s, c and b well established experimentally and important feature of flavour dynamics
- Standard model is still healthy; no significant deviations noted
- Theory predictions need more elaboration; besides limitations of theory, part of uncertaintes have experimental origin
- Capital ? CP in lepton sector; very promising hints exist
- Strong CP problem: what are the questions where experiment could help?