Gamma spectroscopy at ISOLDE for isospin mirror asymmetry studies

Víctor Guadilla

Faculty of Physics, University of Warsaw

19/10/2023 1/45

1 Isospin asymmetry

$\bigcirc \beta$ decay of ²⁷Na

イロト イボト イヨト イヨ

2 Gamma spectroscopy

3 β decay of 27 Na

<ロト < 回ト < 巨ト < 巨ト

Isospin formalism

- Heisenberg (1932) and Wigner (1937)
- \bullet Mass difference quarks u and $d\ll$ binding energy of hadrons
- Symmetry conserved under strong interaction

Víctor Guadilla

Seminar ZFJ

Isospin mirror asymmetry

$$MED(A,T) = E_{ex}(T,T_{z}=T) - E_{ex}(T,T_{z}=-T)$$

<ロト < 回ト < 回ト < 回ト

Isospin mirror asymmetry

$$MED(A,T) = E_{ex}(T,T_z=T) - E_{ex}(T,T_z=-T)$$

M.A. Bentley et al., PRC 92, 024310 (2015)

- electromagnetic effects
- ullet isospin-symmetry-breaking effective interaction V_B

Víctor Guadilla

Isospin mirror asymmetry

Connection between MED and neutron skin

$$\Delta R_{np} = \sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle} \propto \zeta$$

Isospin mirror asymmetry in β decay

Isospin-symmetry-breaking corrections, δ_C , for superallowed Fermi decays

$$\mathcal{F}t = ft(1+\delta_R')(1+\delta_{NS}-\boldsymbol{\delta_C}) \propto G_V^{-2}$$

イロト イボト イヨト イヨト

Isospin mirror asymmetry in β decay

Isospin-symmetry-breaking corrections, δ_C , for superallowed Fermi decays

$$\mathcal{F}t = ft(1+\delta'_R)(1+\delta_{NS}-\boldsymbol{\delta_C}) \propto G_V^{-2}$$

Conserved Vector Current hypothesis \rightarrow constraint different models:

7 / 45

Reminder ft: Fermi theory

 \rightarrow Experimental ingredients: $Q_{\beta},\,T_{1/2}$ and I_{β}

$$\begin{split} f(Q_{\beta},Z) &= \int_{1}^{\varepsilon_{max}} F(Z,\varepsilon)\varepsilon\sqrt{\varepsilon^{2}-1}\left(\frac{Q_{\beta}}{m_{e}c^{2}}-\varepsilon+1\right)^{2}d\varepsilon\\ t &= \frac{T_{1/2}(1+P_{EC})}{I_{\beta}} \end{split}$$

 \rightarrow Theoretically: sensitivity to initial and final wave functions

$$ft = \left(\frac{2\pi^3\hbar^7 ln2}{m_e^5 c^4}\right) \frac{1}{g_V^2 |\langle \psi_f \mid \tau \mid \psi_i \rangle |^2 + g_A^2 |\langle \psi_f \mid \tau \sigma \mid \psi_i \rangle |^2}$$

イロト イポト イヨト イヨト

Isospin mirror asymmetry in β decay

$$\delta = \frac{ft^+}{ft^-} - 1$$

<ロト < 回ト < 回ト < 回ト

Isospin mirror asymmetry in β decay

$$\delta = \frac{ft^+}{ft^-} - 1$$

J.-C. Thomas et al., EPJA 21, 419 (2004)

Víctor Guadilla

<ロト < 回ト < 回ト < 回ト

Halo nuclei

B.Q. Chen et al., JPG 24, 97 (1998)

T. Suzuki et al., PRL 89, 012501 (2002)

- Low neutron/proton separation energies
- Extended neutron/proton matter densities
- Narrow momentum distributions and low angular momentum

Halo nuclei

B.Q. Chen et al., JPG 24, 97 (1998)

- Low neutron/proton separation energies
- Extended neutron/proton matter densities
- Narrow momentum distributions and low angular momentum

Theoretical and experimental efforts to identify and confirm new cases

Halo nuclei

* More difficult to investigate proton halo cases (Coulomb barrier)

 \star 2p halo: ¹⁷Ne best candidate but: C. Lehr et al., PLB 827, 136957 (2022)

Víctor Guadilla

Proton halo candidates in the *sd* shell

Possible protons in the $2s_{1/2}$ orbital

Low proton separation energies:

- 26 P(Z=15): S_{1p} =140(200) keV
- ${}^{27}S(Z=16)$: $S_{1p}=581(214) \text{ keV}$ $S_{2p}=727(78) \text{ keV}$
- ²²Al(Z=13) S_{1p}=-7(400) keV
- ²³Al(Z=13) S_{1p}=140.9(4) keV

A = A = A

• ²⁶P-²⁶Na:

- D. Pérez-Loureiro et al. PRC 93, 064320 (2016)
- + K. Kaneko et al. NPA 986, 107 (2019)

 $\delta(2_1^+) = 51(10)\%$

H. Jian et al., Symmetry 13, 2278 (2021) $\delta(2^+_1) = 46(13)\%$

• ²⁷S-²⁷Na:

Ł. Janiak et al., PRC 95, 034315 (2017) – L.J. Sun et al. PRC 99, 064312 (2019) $\delta(3/2^+_1)=38(26)\%$

²²Si-²²O:

J. Lee et al. PRL 125, 192503 (2020) $\delta(1^+_1) = 209(96)\%$

• ²⁶P-²⁶Na:

- D. Pérez-Loureiro et al. PRC 93, 064320 (2016)
- + K. Kaneko et al. NPA 986, 107 (2019)

$$\delta(2_1^+) = 51(10)\%$$

H. Jian et al., Symmetry 13, 2278 (2021) $\delta(2^+_1) = 46(13)\%$

• ²⁷S-²⁷Na:

Ł. Janiak et al., PRC 95, 034315 (2017) + L.J. Sun et al. PRC 99, 064312 (2019) $\delta(3/2^+_1)=38(26)\%$

 $\delta^{-22}{
m Si-}^{22}{
m O}$: J. Lee et al. PRL 125, 192503 (202 $\delta(1_1^+)=209(96)^{10}$

• ²⁶P-²⁶Na:

- D. Pérez-Loureiro et al. PRC 93, 064320 (2016)
- + K. Kaneko et al. NPA 986, 107 (2019)

$$\delta(2_1^+) = 51(10)\%$$

H. Jian et al., Symmetry 13, 2278 (2021) $\delta(2^+_1) = 46(13)\%$

• ${}^{27}S-{}^{27}Na:$

Ł. Janiak et al., PRC 95, 034315 (2017) + L.J. Sun et al. PRC 99, 064312 (2019) $\delta(3/2^+_1)=38(26)\%$

• ${}^{22}\text{Si-}^{22}\text{O}$: J. Lee et al. PRL 125, 192503 (2020) $\delta(1^+_1)=209(96)\%$

• ²⁶P-²⁶Na:

- D. Pérez-Loureiro et al. PRC 93, 064320 (2016)
- + K. Kaneko et al. NPA 986, 107 (2019)

 $\delta(2_1^+) = 51(10)\%$

H. Jian et al., Symmetry 13, 2278 (2021) $\delta(2^+_1) = 46(13)\%$

• ²⁷S-²⁷Na:

Ł. Janiak et al., PRC 95, 034315 (2017) + L.J. Sun et al. PRC 99, 064312 (2019) $\delta(3/2^+_1)=38(26)\%$

• ${}^{22}\text{Si-}^{22}\text{O}$: J. Lee et al. PRL 125, 192503 (2020) $\delta(1^+_1)=209(96)\%$ $\begin{array}{l} \mbox{Recently:} \ ^{23}{\rm Si}\text{-}^{23}{\rm F} \\ \delta(5/2^+_2) = 201(108)\% \\ \mbox{H. Jian et al.,} \end{array}$

Halo character: isospin mirror asymmetry (theory)

 \rightarrow Investigation of orbital occupations:

イロト イボト イヨト イヨト

Halo character: isospin mirror asymmetry (theory)

- \rightarrow Investigation of orbital occupations:
- \star Shell-model calculation with Coulomb + isospin-nonconserving forces

J. Lee et al. PRL 125, 192503 (2020)

 \star Ab initio with Coulomb + isospin-nonconserving forces

H. H. Li et al., PRC 107, 014302 (2023)

Halo character: isospin mirror asymmetry (theory)

- \rightarrow Investigation of orbital occupations:
- \star Shell-model calculation with Coulomb + isospin-nonconserving forces

J. Lee et al. PRL 125, 192503 (2020)

 \star Ab initio with Coulomb + isospin-nonconserving forces

H. H. Li et al., PRC 107, 014302 (2023)

Large mirror asymmetries due to large occupations of $2s_{1/2}$ orbitals

Víctor Guadilla

Halo character: isospin mirror asymmetry (experiment)

Completeness of β intensity distributions?

 $\beta\text{-decay}$ spectroscopy data of mirror nuclei may explain the isospin mirror asymmetry values

Halo character: isospin mirror asymmetry (experiment)

Completeness of β intensity distributions?

 $\beta\text{-decay}$ spectroscopy data of mirror nuclei may explain the isospin mirror asymmetry values

27	Ν	а
----	---	---

 ^{22}O

$I_{\beta} (3/2^+_1) [\%]$	logft	δ [%]	I_{β}	(1_1^+) [%]	logft
85.8	4.30	38		29	4.59
80	4.33	29		25	4.65
75	4.36	20		20	4.75
70	4.39	12		15	4.87
65	4.42	5		10	5.05
60	4.46	-5		5	5.35

(ㅁㅏㅅ@ㅏㅅㄹㅏㅅㄹㅏ ㅋㅋ ?)

 δ [%]

216

175

119 66

10

-45

3 β decay of 27 Na

イロト イボト イヨト イヨト

Determining I_{β}

Traditional approach: I_{β} deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

19/10/2023 17/45

Determining I_{β}

Traditional approach: I_{β} deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray?

tor	Guadil	2	
	Guaun	ia 👘	

Ví

Determining I_{β}

Traditional approach: I_{β} deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray?

Pandemonium effect J.C. Hardy et al., PLB 71 (1977) 307

	1 - A	C	
V	ICTOR	Gu	adilla

Gamma spectroscopy

Pandemonium

"The rest were all Far to the inland retired, about the walls Of Pandemonium city and proud seat Of Lucifer."

J. Milton in Paradise Lost X (1667) line 424

John Martin, Pandaemonium, 1825 (source Wikipedia)

Total **Absorption** γ -Ray **S**pectroscopy (TAGS)

A **T**otal **A**bsorption **S**pectrometer (TAS) acts as a **calorimeter**, absorbing the full energy released in the β -decay process.

It requires:

Large scintillation crystals covering a solid angle of $\sim 4\pi$ in order to

maximize the γ -ray dete	ction efficiency .		
			500
Víctor Guadilla	Seminar ZFJ	19/10/2023	19 / 45

TAGS analysis

Inverse problem:

$$d_i = \sum_{j=1}^m \boldsymbol{R_{ij}(B)} f_j$$

- $j \rightarrow$ levels, $i \rightarrow$ experimental bins
- f_j : $I_{\beta}(E)$ distribution
- d_i : experimental spectrum
- R_{ij} : response matrix of the detector
- B: branching ratio matrix (depends on the decay)

A deconvolution process to extract f_i

J.L. Tain and D. Cano-Ott NIMA 571 (2007) 728

3.40 .	~	1111
Victor	Guia	dilla
•		- anno

Seminar ZFJ

TAGS analysis

TAGS analysis

Characterization of the detector $\rightarrow R_{ij}$

V. Guadilla et al., NIMA 910, 79 (2018)

(4) E > (4) E

Example of TAGS deconvolution

Example of TAGS deconvolution

19/10/2023 22 / 45
Example of TAGS deconvolution

\rightarrow Case dependent!

• Q_{β}

- Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β-delayed particle emission
- Ground state feeding
- ft values

イロト イポト イヨト イヨト

\rightarrow Case dependent!

• Q_{β}

- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

- Q_{β}
- \bullet Last level known to be populated in β decay
- Density of levels
- γ multiplicity of cascades (spin-parities of mother and daughter)
- β -delayed particle emission
- Ground state feeding
- ft values

Reflection on efficiencies

T. Lauritsen et al., NIMA 836,46 (2016)

A.K. Mistry et al., NIMA 1033, 166662 (2022)

Example: cascade of 3 γ -rays of 1 MeV each

0.12% vs. 82%

Isospin asymmetry

2 Gamma spectroscopy

3 β decay of ^{27}Na

4 Conclusions and outlook

イロト イポト イヨト イヨト

β decay of $^{27}\mathrm{Na}$

What was known in the β decay of 27 Na

β decay of $^{27}{ m Na}$

What was known in the β decay of 27 Na

19/10/2023 26 / 45

What was known in the β decay of ^{27}Na

Accumulated level density:

TAGS measurement of ²⁷Na at ISOLDE

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Beta-decay spectroscopy of 27 Na and 22 O for isospin asymmetry studies in the sd shell

January 5, 2021

History: TAS@ISOLDE

\rightarrow Pioneering TAGS experiments:

C.L. Duke et al., NPA 151, 609 (1970)

Lucrecia: TAS@ISOLDE

R. Catherall et al., JPG 44, 094002 (2017)

Víctor Guadilla

 ▶
 ▲
 ■
 ■

 >

 <th<</th>
 <th<</th>

 <

<ロト < 回ト < 回ト < 回ト < 回ト -

Lucrecia: TAS@ISOLDE

R. Catherall et al., JPG 44, 094002 (2017)

Víctor Guadilla

19/10/2023 30 / 45

イロト イポト イヨト イヨト

Lucrecia: TAS@ISOLDE

- J. A. Briz et al. PRC 92, 054326 (2015)
- 20 years operational: B. Rubio et al., JPG 44, 084004 (2017)
- Total efficiency $\sim 90\%$
- Coincidences with β detector and x-ray detector
- Shielding: boron, polyethylene, lead, copper and aluminium

Experiment ²⁷Na β decay

- UC target and HRS separator
- Beam: 27 Na + 27 Mg
- Cooling down beam transfer line reduced contamination of ^{27}Mg
- \bullet New (refurbished) tape transport system for implantation and removal of the activity + vacuum system (IFIC)

イロト イポト イヨト イヨト

TAGS analysis of $^{27}\mathrm{Na}\ \beta$ decay

19/10/2023 33/45

TAGS analysis of $^{27}\mathrm{Na}\ \beta$ decay

19/10/2023 33/45

TAGS analysis of 27 Na β decay

Neutron- γ competition

Hauser-Feshbach statistical model calculations

J.L Tain et al. PRL 115, 062502 (2015)

- E. Valencia et al., PRC 95, 024320 (2017)
- V. Guadilla et al., PRC 100, 044305 (2019)

$$\left\langle \frac{\Gamma_{\gamma}}{(\Gamma_{\gamma} + \Gamma_n)} \right\rangle \leftrightarrows \frac{I_{\beta\gamma}}{(I_{\beta\gamma} + I_{\beta n})}$$

Ingredients:

- * Nuclear level densities
- ★ Photon strength functions
- Neutron transmission coefficients

Víctor Guadilla

Neutron- γ competition

Possible hindrance of neutron emission up to the energy of the first 2^+ state in 26 Mg: large angular momentum needed, I=2,4

Víctor Guadilla

19/10/2023 35/45

Isospin asymmetry

2 Gamma spectroscopy

3 β decay of 27 Na

イロト イポト イヨト イヨト

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: **powerful** tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- \bullet Final calibration ongoing \rightarrow Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} $(3/2^+_1) \downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

イロト イポト イヨト イヨト

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: **powerful** tool for decay spectroscopy studies
- New decay data for $^{27}\mathrm{Na}$ point to previously unknown β intensity
- \bullet Final calibration ongoing \rightarrow Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} $(3/2^+_1) \downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: **powerful** tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- \bullet Final calibration ongoing \rightarrow Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} $(3/2^+_1) \downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: powerful tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- $\bullet\,$ Final calibration ongoing $\to\,$ Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} $(3/2^+_1) \downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

- \bullet Isospin mirror asymmetry in β decay and proton halo nuclei
- TAGS technique: powerful tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- $\bullet\,$ Final calibration ongoing $\rightarrow\,$ Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- $I_{\beta} (3/2^+_1) \downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

イロト 不得下 イヨト イヨト

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: powerful tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- $\bullet\,$ Final calibration ongoing $\to\,$ Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} (3/2⁺₁) $\downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $\bullet\,$ Isospin mirror asymmetry in $\beta\,$ decay and proton halo nuclei
- TAGS technique: **powerful** tool for decay spectroscopy studies
- $\bullet\,$ New decay data for $^{27}{\rm Na}$ point to previously unknown β intensity
- $\bullet\,$ Final calibration ongoing $\to\,$ Master Thesis Piotr Bielak
- First confirmation of Pandemonium in a light nucleus!
- I_{β} (3/2⁺₁) $\downarrow \Rightarrow \delta(3/2^+_1) \downarrow$
- Neutron unbound states populated: neutron- γ competition

Víctor Guadilla

Outlook: β decay of ²²O

R. Lică et al., PRC 100, 034306 (2019)

• High efficiency β - γ configuration:

5 clovers + β detector (NE102 plastic scintillator covering $\simeq 4\pi$)

• Movable tape for implantation and removal of the activity

Outlook: β decay of ²²O $Q_{\beta^-} = 6490(60) \text{ keV}$ 0^{+} ^{22}O $1/2^{+}$ 280 keV $T_{1/2}=2.25(9)$ s $S_n = 5230(13) \text{ keV}$ $5/2^{+}$ $^{21}\mathrm{F}$ Only two levels 1^{+}_{-} seen in β decay $-1_1^+ I_\beta = 31(5)\%$ ENSDF $T_{1/2} = 4.23(4) \text{ s}$ ^{22}F 4^{+}

Shell model calculations predict $I_{\beta}(1_1^+)=13-45\%$

(USD effective interaction predicts 0.04%!)

L. Weissman et al., JPG 31, 553 (2005)

Víctor Guadilla

Seminar ZFJ

Outlook: β decay of ²²O

Shell model calculations predict $I_{\beta}(1_1^+)=13-45\%$

(USD effective interaction predicts 0.04%!)

L. Weissman et al., JPG 31, 553 (2005)

Víctor Guadilla
Outlook: β decay of ²²O $Q_{\beta^{-}} = 6490(60) \text{ keV}$ 0^{+} ^{22}O $1/2^{+}$ 280 keV $T_{1/2}=2.25(9)$ s $S_n = 5230(13) \text{ keV}$ $5/2^{+}$ $^{21}\mathrm{F}$ Only two levels 1^{+}_{-} seen in β decay $\cdot 1^+_1 \ I_eta \le 34\%$ F. Hubert et al., ZPA 333, 237 (1989)

 $_{4^+}$ $_{2^2\mathrm{F}}$ $T_{1/2}$ =4.23(4) s

Shell model calculations predict $I_{\beta}(1_1^+)=13-45\%$

(USD effective interaction predicts 0.04%!)

L. Weissman et al., JPG 31, 553 (2005)

Víctor Guadilla

Seminar ZFJ

Shell model and HFB calculations predict extra 0⁺ and 1⁺ levels Shell model calculations predict $I_{\beta}(1_{3}^{+})=0.2-15\%$

L. Weissman et al., JPG 31, 553 (2005)

	~	
Victor		dilla
VICLOI	uuu	umu

Outlook: β decay of ²²O $Q_{\beta^{-}} = 6490(60) \text{ keV}$ 0^{+} P. L. Reeder et al., PRC 44, 1435 (1991) ^{22}O 280 keV $P_n < 22\%$ $1/2^{+}$ $T_{1/2}=2.25(9)$ s $S_n = 5230(13) \text{ keV}$ $5/2^{+}$ $^{21}\mathrm{F}$ Only two levels 1^{+}_{2} seen in β decay $T_{1/2} = 4.23(4) \text{ s}$ ^{22}F 4^{+}

Shell model and HFB calculations predict extra 0^+ and 1^+ levels Shell model calculations predict $I_{\beta}(1^+_3)=0.2-15\%$

L. Weissman et al., JPG 31, 553 (2005)

N # C	~	
VICTOR		-
VILLUI	- CILIC	•

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Direct measurement of superallowed β transitions with Lucrecia

September 26, 2023

Ground state feeding determination

• In high-resolution γ -spectroscopy:

Víctor Guadilla

$$I_{\beta}^{g.s.} = 1 - I_{\beta\gamma}$$

• A>62: large amount of 1^+ states \rightarrow up to $1\%~\beta$ -decay feeding numerous Gamow-Teller transitions \Rightarrow possible **Pandemonium**

 62 Ga 74 Rb 99.8577^{+0.0023}_{-0.0029}% 99.545(31)% MacLean et al., PRC 102, 054325 (2020) Dunlop et al., PRC 88, 045501 (2013) イロト イボト イヨト イヨト 19/10/2023 42 / 45

Seminar ZFJ

Ground state feeding determination

• TAGS technique naturally gives a value due to the β penetration!

 $I_{\beta}^{g.s.}$ value: 93.3(1)% ENSDF 93.9(5)% TAGS

V. Guadilla et al., Phys. Rev. C 96, 014319 (2017)

Ground state feeding determination

• TAGS technique naturally gives a value due to the β penetration!

• Counting method: Greenwood et al., Nucl. Instrum. Methods A 317, 175 (1992)

Ground state feeding determination

• TAGS technique naturally gives a value due to the β penetration!

• Counting method: Greenwood et al., Nucl. Instrum. Methods A 317, 175 (1992)

• Recently revised: $4\pi\gamma - \beta$

ratio $N_{\beta\gamma}/N_{\beta}$ (exp.) + ratios of β efficiencies (MC)

V. Guadilla et al., Phys. Rev. C 102, 064304 (2020)

V. Guadilla¹, P. Bielak¹, J. A. Briz², A. Fijałkowska¹, L. M. Fraile²,
A. Korgul¹, U. Köster³, E. Nácher⁴, Zs. Podolyák⁵, W. Poklepa¹,
K. Solak¹

 ¹Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
 ²Universidad Complutense de Madrid, CEI Moncloa E-28040 Madrid, Spain
 ³Institut Laue-Langevin, 38042 Grenoble, France
 ⁴Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, E-46071, Valencia, Spain
 ⁵University of Surrey, Guildford, GU2 7XH, UK

Thank you very much for your attention!

Contract No. 2019/35/D/ST2/02081

《曰》 《聞》 《臣》 《臣》 三臣