Beta-decay measurements with Total Absorption gamma-ray Spectroscopy at **IGISOL**

Víctor Guadilla

- 2 Experiments at IGISOL
- 3 Reactor physics
- 4 Nuclear astrophysics
- 5 Collective modes
- 6 Double β decay

・ 何 ト ・ ヨ ト ・ ヨ ト

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- A Nuclear astrophysics
- 5 Collective modes
- **6** Double β decay

イロト イ団ト イヨト イヨト

Beta decay studies

 ▶
 ▲
 ■

 </t

ヘロト 人間ト 人団ト 人団ト

Beta decay studies

▶ < ≣ > ≡ ∽ < ⊂ 16/01/2020 4 / 46

ヘロト 人間ト 人団ト 人団ト

Beta decay studies

 β -strength in the Fermi theory framework

$$S_{\beta}(E_x) = \sum_{E_f \in \Delta E} \frac{\frac{1}{\Delta E} I_{\beta}(E_x)}{f(Q_{\beta} - Ex, Z)T_{1/2}} =$$
$$= \frac{1}{6146 \pm 7} \left(\frac{g_A}{g_V}\right)^2 \sum_{E_f \in \Delta E} \frac{1}{\Delta E} B(GT)_{i \to f}$$

Víctor Guadilla

Validation of theoretical models

Comparison of **integral** quantities (P_n values, $T_{1/2}$)

P. Möller PRC 67 (2003) 055802

Validation of theoretical models

Comparison of **integral** quantities (P_n values, $T_{1/2}$)

P. Möller PRC 67 (2003) 055802

R. Caballero-Folch et al. PRL 117 (2016) 012501

Problems to describe coherently the observed half-lives across N=126

Víctor Guadilla

Validation of theoretical models

Need of validating models with β strength comparisons: full information about the overlap of parent and daughter nuclear wave functions

E. Nacher et al., PRL 92 (2004) 232501 QRPA calculations:

P. Sarriguren et al., PRC 89 (2014) 034311

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray?

A. 10	~	1222
Victor		dilla
VICTOR	uuu	umu

Determining I_{β}

 I_{β} are often deduced from γ -intensity balance of the cascades that follow the β decay, using **HPGe detectors**:

Low efficiency of HPGe detectors \rightarrow what happens if we miss a γ -ray?

Pandemonium effect J.C. Hardy et al., PLB 71 (1977) 307

Víctor Guadilla

Total Absorption γ -Ray Spectroscopy (TAGS)

A Total Absorption Spectrometer (TAS) acts as a calorimeter, absorbing the full energy released in the β -decay process.

It requires:

Large scintillator crystals covering a solid angle of $\sim 4\pi$ in order to maximize the $\gamma\text{-ray}$ detection efficiency.

Víctor Guadilla	Nuclear Physics Seminar UW				16/01/202	20	8 / 46
		${} = \square \triangleright $	< 🗗 🕨	(三)	<	1	$\mathcal{O} \land \mathcal{O}$

Total Absorption γ -Ray Spectroscopy (TAGS)

Inverse problem:

$$d_i = \sum_{j=1}^m \boldsymbol{R_{ij}(B)} f_j$$

- $j \rightarrow$ levels, $i \rightarrow$ experimental bins
- f_j : $I_{\beta}(E)$ distribution
- d_i : experimental spectrum
- R_{ij} : response matrix of the detector
- B: branching ratio matrix (depends on the decay)

A deconvolution process to extract f_j

J.L. Tain and D. Cano-Ott NIMA 571 (2007) 728

Total Absorption γ -Ray Spectroscopy (TAGS)

Examples of Total absorption γ -ray spectrometers

Rocinante

DTAS

- **Rocinante**: cylindrical 12-fold segmented BaF₂ detector (25 cm external diameter and 25 cm length). Used in experiments at IGISOL (Finland).
- **DTAS**: 16-18 Nal(TI) crystals of 15 cm \times 15 cm \times 25 cm. Used in experiments at IGISOL (Finland). Recently used at RIKEN (Japan).

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- A Nuclear astrophysics
- 5 Collective modes
- 6 Double β decay

★個ト ★国ト ★国ト

IGISOL-IV: Jyväskylä (Finland)

▶ < ≧ ▶ ≧ ∽ ९ C 16/01/2020 12 / 46

<ロト < 回ト < 巨ト < 巨ト

IGISOL-IV: Jyväskylä (Finland)

12 / 46

IGISOL-IV: Jyväskylä (Finland)

From Spain to Finland

More than 2 tones of equipment were transported from Valencia to Jyväskylä (Finland) in 2014

- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams
- Implantation at the centre of DTAS

- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams
- Implantation at the centre of DTAS

- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams
- Implantation at the centre of DTAS

- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams
- Implantation at the centre of DTAS

- Proton induced fission ion-guide source
- Mass separator magnet
- Double Penning trap system to clean the beams
- Implantation at the centre of DTAS

DTAS@IGISOL: set-up

- DTAS: 18 Nal(TI) crystals
- Scintillator plastic β detector
- HPGe detector and Tape station
- MC characterization of the detectors

V. Guadilla et al., NIMB 376 (2016) 334

16/01/2020 15 / 46

MC characterization: the path to R_{ij}

Segmentation can be useful to study different multiplicities:

V. Guadilla et al., NIMA 910 (2018) 79

MC characterization: the path to R_{ij}

Segmentation can be useful to study different multiplicities:

V. Guadilla et al., NIMA 910 (2018) 79

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
 - 4 Nuclear astrophysics
 - 5 Collective modes
 - **6** Double β decay

・ 何 ト ・ ヨ ト ・ ヨ ト

Connection with reactor physics

6 β decays/fission \rightarrow 10 21 $\overline{\nu}_{e}/\text{s}$ in a 1 GW reactor

$\overline{ u}_e$ for fundamental physics and applications

- Neutrino oscillation experiments (Daya Bay, RENO, Double Chooz)
- Discrepancies experiment-calculations in absolute flux ("reactor anomaly") and shape ("bump")
- Antineutrino monitoring for non proliferation

Decay heat: energy due to the radioactive decay of fission products

- Design and safe operation of a reactor
- Evaluation of shielding requirements
- Safe management of radioactive waste products

Connection with reactor physics

6 eta decays/fission ightarrow 10²¹ $\overline{
u}_e/{
m s}$ in a 1 GW reactor

- $\overline{
 u}_e$ for fundamental physics and applications
 - Neutrino oscillation experiments (Daya Bay, RENO, Double Chooz)
 - Discrepancies experiment-calculations in absolute flux ("reactor anomaly") and shape ("bump")
 - Antineutrino monitoring for non proliferation

Decay heat: energy due to the radioactive decay of fission products

- Design and safe operation of a reactor
- Evaluation of shielding requirements
- Safe management of radioactive waste products

Connection with reactor physics

6 β decays/fission \rightarrow 10 21 $\overline{\nu}_{e}/{\rm s}$ in a 1 GW reactor

- $\overline{
 u}_e$ for fundamental physics and applications
 - Neutrino oscillation experiments (Daya Bay, RENO, Double Chooz)
 - Discrepancies experiment-calculations in absolute flux ("reactor anomaly") and shape ("bump")
 - Antineutrino monitoring for non proliferation

Decay heat: energy due to the radioactive decay of fission products

- Design and safe operation of a reactor
- Evaluation of shielding requirements
- Safe management of radioactive waste products

Reactor summation calculation method

Nuclear data approach

• $\overline{\nu}_e$ spectrum calculation:

$$S(E_{\overline{\nu}}) = \sum_{i} \left(A_{i}(t) \times \sum_{j} I_{ij} S_{ij}(E_{\overline{\nu}}) \right)$$

Reactor summation calculation method

Nuclear data approach

• $\overline{\nu}_e$ spectrum calculation:

$$S(E_{\overline{\nu}}) = \sum_{i} \left(A_{i}(t) \times \sum_{j} I_{ij} S_{ij}(E_{\overline{\nu}}) \right)$$

• Decay heat calculation:

$$f(t) = \sum_{i} (\overline{E}_{\beta,i} + \overline{E}_{\gamma,i}) \lambda_i N_i(t) \rightarrow \begin{cases} \overline{E}_{\gamma} = \sum_{i} I_{\beta}(E_i) E_i \\ \overline{E}_{\beta} = \sum_{i} I_{\beta}(E_i) < E_{\beta i} > \end{cases}$$

Reactor summation calculation method

Strongly dependent on databases

 \hookrightarrow non Pandemonium I_{β} needed: TAGS data!!

	4-5 MeV	5-6 MeV	6–7 MeV	7-8 MeV
⁹² Rb	4.74%	11.49%	24.27%	37.98%
⁹⁶ Y	5.56%	10.75%	14.10%	
¹⁴² Cs	3.35%	6.02%	7.93%	3.52%
¹⁰⁰ Nb	5.52%	6.03%		
⁹³ Rb	2.34%	4.17%	6.78%	4.21%
^{98m} Y	2.43%	3.16%	4.57%	4.95%
¹³⁵ Te	4.01%	3.58%		
104mNb	0.72%	1.82%	4.15%	7.76%
⁹⁰ Rb	1.90%	2.59%	1.40%	
⁹⁵ Sr	2.65%	2.96%		
⁹⁴ Rb	1.32%	2.06%	2.84%	3.96%

A.-A. Zakari-Issoufou et al., PRL (2015)

A. A. Sonzogni PRC(R)(2015)
Impact of TAGS data

Valencia-Nantes-Surrey collaboration

16/01/2020 21 / 46

Some important contributors with isomers

Parent nucleus	Q_{β}	Energy	Priority	Priority	Priority
	[keV]	[keV]	$\rm U/Pu$	Th/U	$\overline{ u}_e$
96gsY	7103	0	2	2	1
$96 \mathrm{mY}$		1140	-	1	-
^{98gs} Nb	4591	0	1	1	1
^{98m}Nb		84	-	-	-
100gsNb	6396	0	1	1	1
$100 \mathrm{m} \mathrm{Nb}$		313	-	1	-
^{102gs} Nb	7262	0	2	2	1
^{102m}Nb		94	-	1	-

(priorities from IAEA Report INDC(NDS) 0676 (2015))

Víctor Guadilla

16/01/2020 22 / 46

Some important contributors with isomers

Parent nucleus	Q_{β}	Energy	Priority	Priority	Priority
	[keV]	$[\mathrm{keV}]$	U/Pu	Th/U	$\overline{ u}_e$
96gsY	7103	0	2	2	1
$96 \mathrm{mY}$		1140	-	1	-
^{98gs} Nb	4591	0	1	1	1
^{98m} Nb		84	-	-	-
$100 \mathrm{gs} \mathrm{Nb}$	6396	0	1	1	1
$100 \mathrm{m} \mathrm{Nb}$		313	-	1	-
^{102gs} Nb	7262	0	2	2	1
^{102m}Nb		94	-	1	-

(priorities from IAEA Report INDC(NDS) 0676 (2015))

Víctor Guadilla

16/01/2020 22 / 46

Disentanglement of the decaying states: A=102

Nuclear Physics Seminar UW

Disentanglement of the decaying states: A=102

Víctor Guadilla

16/01/2020 23 / 46

Disentanglement of the decaying states: A=102

Disentanglement of the decaying states: A=102

Disentanglement of the decaying states: A=102

TAGS results

- \bullet Previously undetected beta intensity found in the decays of ${}^{100\text{gs},100\text{m}102\text{gs}}\text{Nb}$
- Beta intensity of ^{102m}Nb determined for the first time

Decay	$\overline{E}_{\gamma} [\text{keV}]$			\overline{E}_{β} [keV]		
	TAGS	ENDF	JEFF	TAGS	ENDF	JEFF
$^{100\mathrm{gs}}\mathrm{Nb}$	959(275)	708(37)	708	2414(133)	2539(213)	2484(209)
$^{100\mathrm{m}}\mathrm{Nb}$	2763(27)	2213(69)	2056	1706(13)	1999(198)	2039
$^{102\rm gs}\rm Nb$	2764(57)	2094(97)	2094	1948(27)	2300(169)	2276(169)
$^{102\mathrm{m}}\mathrm{Nb}$	1023(170)	-	-	2829(82)	-	-

Pandemonium: \overline{E}_{β} overestimated while \overline{E}_{γ} underestimated

V. Guadilla et al. PRL 122, 042502, 2019 V. Guadilla et al. PRC 100, 024311, 2019

TAGS results

- \bullet Previously undetected beta intensity found in the decays of ${}^{100\text{gs},100\text{m}102\text{gs}}\text{Nb}$
- Beta intensity of ^{102m}Nb determined for the first time

Decay	\overline{E}_{γ} [keV]			$\overline{E}_{\beta} [\text{keV}]$		
	TAGS	ENDF	JEFF	TAGS	ENDF	JEFF
$^{100\mathrm{gs}}\mathrm{Nb}$	959(275)	708(37)	708	2414(133)	2539(213)	2484(209)
$^{100\mathrm{m}}\mathrm{Nb}$	2763(27)	2213(69)	2056	1706(13)	1999(198)	2039
$^{102\mathrm{gs}}\mathrm{Nb}$	2764(57)	2094(97)	2094	1948(27)	2300(169)	2276(169)
^{102m} Nb	1023(170)	-	-	2829(82)	-	-

Pandemonium: \overline{E}_{β} overestimated while \overline{E}_{γ} underestimated

V. Guadilla et al. PRL 122, 042502, 2019 V. Guadilla et al. PRC 100, 024311, 2019 Impact on reactor summation calculations I

Decay heat ratio computed wrt the reference ENDF/B-VII.1 database:

Impact on reactor summation calculations II

Significant in the region of the reactor antineutrino shape distortion: for the **first time** the discrepancy between the summation calculations and the measured antineutrino spectra is **reduced**

A 44	~		
Victor			la
VICLOI	uu	uun	

16/01/2020 26 / 46

Addendum: shape of Zr isotopes

Comparison with proton-neutron QRPA calculations:

P. Sarriguren and J. Pereira, PRC 81 (2010) 064314 P. Sarriguren, A. Algora, and J. Pereira, PRC 89 (2014) 034311

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- 4 Nuclear astrophysics
 - 5 Collective modes
 - **6** Double β decay

★個ト ★国ト ★国ト

Nuclear astrophysics

Reproduction of the experimental abundances

r-process

- $N_n \sim 10^{20} {\rm cm}^{-3}$ and T $\geq 1 {\rm GK}$
- Half of nuclei beyond iron
- Sites: Core Collapse Supernova, Neutron Star Mergers

<ロト < 回ト < 巨ト < 巨ト

r-process

- $N_n \sim 10^{20} {\rm cm}^{-3}$ and T $\geq 1 {\rm GK}$
- Half of nuclei beyond iron
- Sites: Core Collapse Supernova, Neutron Star Mergers as GW170817

() Hot r-process: β decay-(n, γ) competition during freeze out

2 Cold r-process: equilibrium β decay-(n, γ) not reached

(4 何)ト イヨト イヨト

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability
 - How reliable are (n,γ) HF estimations far from stability?

- **(**) Hot r-process: β decay-(n, γ) competition during freeze out
- **2** Cold r-process: equilibrium β decay-(n, γ) not reached
 - Cross sections are not measurable: from Hauser-Feshbach (HF) statistical model calculations
 - Parameters (NLD, PSF, NTC) for the HF calculations are obtained from data close to stability
 - How reliable are (n,γ) HF estimations far from stability?
 - Constrained with different indirect techniques A.C.Larsen et al., Prog. in Particle and Nuclear Physics 107 (2019)

Connection with β -delayed neutron emission

Difficulty: to observe γ -rays from states above S_n

Víctor Guadilla

16/01/2020 32 / 46

Some cases studied at IGISOL

Nuclide	Q_{β} [keV]	S_n in daughter [keV]	P _n [%]
⁸⁷ Br	6818	5515.17	2.60
⁸⁸ Br	8975	7053	6.58
^{94}Rb	10283	6831	10.5
^{95}Rb	9228	4345	8.7
137	6027	4025.56	7.14

 $\begin{array}{c} 2009 \longleftrightarrow \mbox{Rocinante} \\ \mbox{J.L. Tain et al., PRL 115 (2015) 062502} \\ \mbox{E. Valencia et al., PRC 95 (2017) 024320} \\ \mbox{2014} \longleftrightarrow \mbox{DTAS} \\ \mbox{V. Guadilla et al., NIMB 376 (2016) 334} \\ \mbox{V. Guadilla et al., PRC 100 (2019) 044305} \end{array}$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 β -delayed neutron emission: ¹³⁷I

- Q_{β} =6027 keV and S_n =4025 keV
- P_n =7.14% and $T_{1/2}$ =24.5 s
- Neutrons interact with DTAS (inelastic, capture...) \rightarrow MC

V. Guadilla et al., PRC 100 (2019) 044305

¹³⁷I: analysis

V. Guadilla et al., PRC 100 (2019) 044305

Víctor Guadilla

16/01/2020 36 / 46

V. Guadilla et al., PRC 100 (2019) 044305

Víctor Guadilla

16/01/2020 36 / 46

V. Guadilla et al., PRC 100 (2019) 044305

Víctor Guadilla

Enhanced γ -branching in ⁹⁴Rb with respect to H-F \Rightarrow increase in the photon strength function \Rightarrow similar increase in the (n, γ) cross section

J.L. Tain et al., PRL 115 (2015) 062502 E. Valencia et al., PRC 95 (2017) 024320

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- A Nuclear astrophysics
- 5 Collective modes
 - 6 Double β decay

7 Summary

・ 何 ト ・ ヨ ト ・ ヨ ト

 β decay window covering low-lying collective states Advantages:

- \bullet Complementary to: $(p,p^{'})$, $(\gamma,\gamma^{'})$, $(\alpha,\alpha^{'}\gamma)$
- Studies for exotic nuclei not accessible with other techniques
- Background free data

 β decay window covering low-lying collective states

Disadvantages:

- Different states are populated
- Theoretical interpretation needed
- Sensitivity to γ -rays de-exciting levels at high excitation energy?

 J. L. Tain et al., PRL (2015)
 A. Spyrou et al., PRL (2016)

 V. Vaquero et al., PRL (2017)
 A. Gottardo et al., PLB (2017)

 B. C. Rasco et al. PRC (2017)
 S. Lyons et al., PRC (2019)

 M. Piersa et al., PRC (2019)
 V. Guadilla et al., PRC (2019)

PRL 116, 132501 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 APRIL 2016

Investigating the Pygmy Dipole Resonance Using β Decay

 M. Scheck, ^{1,2,*} S. Mishev, ^{3,4} V. Yu. Ponomarev, ⁵ R. Chapman, ^{1,2} L. P. Gaffney, ^{1,2} E. T. Gregor, ^{1,2} N. Pietralla, ⁵ P. Spagnoletti, ^{1,2} D. Savran, ⁶ and G. S. Simpson ^{1,2}
 ¹School of Engineering and Computing, University of the West of Scouldad, Paisley PA1 2BE, United Kingdom ⁵SUPA, Scottish Universities Physics Alliance, Glasgow G12 8QQ, United Kingdom ³JINR, Joint Institute for Nuclear Research, Dubna 141980, Russia ⁴Institute for Advanced Physical Studies, New Bulgarian University, Sofia 1618, Bulgaria ⁵Institut, fir Kernlpsish, Technische Universität Darmstadt, Def428 Darmstadt, Germany ⁶ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Def4291 Darmstadt, Germany (Received 30 October 2015; published 30 March 2016)

In this contribution it is explored whether γ -ray spectroscopy following β decay with high Q values from mother nuclei with low ground-state spin can be exploited as a probe for the pygmy dipole resonance. The suitability of this approach is demonstrated by a comparison between data from photon scattering, $^{136}Xe(\gamma, \gamma')$, and $^{136}I[I_0^{\alpha} = (1^-)] \rightarrow ^{136}Xe^{\epsilon}$ β -decay data. It is demonstrated that β decay populates $|I^{-}|$ levels associated with the pygmy dipole resonance, but only a fraction of those. The complementary insight into the wave functions probed by β decay is elucidated by calculations within the quasiparticle phonon model. It is demonstrated that β decay dominantly populates complex configurations, which are only weakly excited in inelastic scattering experiments.

Population of 1^- states in β decay associated with Pygmy modes?

PRL 116, 132501 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 APRIL 2016

Investigating the Pygmy Dipole Resonance Using β Decay

 M. Scheck, ^{1,2,*} S. Mishev, ^{3,4} V. Yu. Ponomarev, ⁵ R. Chapman, ^{1,2} L. P. Gaffney, ^{1,2} E. T. Gregor, ^{1,2} N. Pietralla, ⁵ P. Spagnoletti, ^{1,2} D. Savran, ⁶ and G. S. Simpson ^{1,2}
 ¹School of Engineering and Computing, University of the West of Scouldad, Paisley PA1 2BE, United Kingdom ⁵SUPA, Scottish Universities Physics Alliance, Glasgow G12 8QQ, United Kingdom ³JINR, Joint Institute for Nuclear Research, Dubna 141980, Russia ⁴Institute for Advanced Physical Studies, New Bulgarian University, Sofia 1618, Bulgaria ⁵Institut, fir Kernlpsish, Technische Universität Darmstadt, Def428 Darmstadt, Germany ⁶ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung, Def4291 Darmstadt, Germany (Received 30 October 2015; published 30 March 2016)

In this contribution it is explored whether γ -ray spectroscopy following β decay with high Q values from mother nuclei with low ground-state spin can be exploited as a probe for the pygmy dipole resonance. The suitability of this approach is demonstrated by a comparison between data from photon scattering, ¹³⁶Xe(γ , γ'), and ¹³⁶I [$I_0^{\sigma} = (1^-)$] \rightarrow ¹³⁶Xe^{*} β -decay data. It is demonstrated that β decay populates [1⁻ levels associated with the pygmy dipole resonance, but only a fraction of those. The complementary insight into the wave functions probed by β decay is elucidated by calculations within the quasiparticle phonon model. It is demonstrated that β decay dominantly populates complex configurations, which are only weakly excited in inelastic scattering experiments.

Population of 1^- states in β decay associated with Pygmy modes?

$$^{96\mathsf{gs}}\mathsf{Y} \ (\mathsf{0^-}) o {}^{96}\mathsf{Zr} \ (1^-)$$

Víctor Guadilla

16/01/2020 40 / 46
Decay of ^{96gs}Y

TAGS: high-efficiency \rightarrow Pandemonium avoided

- Possibility to study multiplicities thanks to segmentation
- Statistical model for unknown level scheme (high excitation energies)
- Nice control of MC simulations

Decay of ^{96gs}Y

TAGS: high-efficiency \rightarrow Pandemonium avoided

- Possibility to study multiplicities thanks to segmentation
- Statistical model for unknown level scheme (high excitation energies)
- Nice control of MC simulations

Decay of ^{96gs}Y

TAGS: high-efficiency \rightarrow Pandemonium avoided

- Possibility to study multiplicities thanks to segmentation
- Statistical model for unknown level scheme (high excitation energies)
- Nice control of MC simulations

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- A Nuclear astrophysics
- 5 Collective modes
- 6 Double β decay

・ 何 ト ・ ヨ ト ・ ヨ ト

Double β decay: ¹⁰⁰Tc

Improvements of the theoretical calculations for the system:

QRPA models may use information of single EC/ β decays as constraints $\downarrow \\ g_{A}, g_{pp}$

Double β decay: ¹⁰⁰Tc

Improvements of the theoretical calculations for the system:

S.K.L. Sjue et al., PRC 78 (2008) 064317

QRPA models may use information of single EC/β decays as constraints $\downarrow_{g_{A_1},g_{pp}}$

Double β decay: ¹⁰⁰Tc

Improvements of the theoretical calculations for the system:

¹⁰⁰Mo(p,n)¹⁰⁰Tc: V. Guadilla et al., PRC 96 (2017) 014319

QRPA models may use information of single EC/ β decays as constraints $\underset{g_A, g_{pp}}{\Downarrow}$

QRPA double β decay calculations

Jouni Suhonen and Osvaldo Civitarese

pnQRPA for ¹⁰⁰Tc wave functions g_{ph} fixed by systematics, $g_{pp}=0.7$ and $g_A=0.4$

ccQRPA for ¹⁰⁰Ru wave functions g_{ph} fixed to reproduce E(2⁺)=539.5 keV, g_{pp} =1.0 and g_A =0.4 from P. Pirinen and J. Suhonen, PRC 91, 054309 (2015)

Conflict with g_A

•
$$T_{1/2}^{(2
u)}$$
=(7.1±0.4)×10¹⁸ yr $ightarrow$ experiment

•
$$T_{1/2}^{(2\nu)} =$$
 7.66 \times 10¹⁸ yr $\rightarrow g_A = 0.6$

•
$$T_{1/2}^{(2\nu)} \sim 3 \times$$
 experiment $\rightarrow g_A = 0.4$

QRPA double β decay calculations

Jouni Suhonen and Osvaldo Civitarese

pnQRPA for ¹⁰⁰Tc wave functions g_{ph} fixed by systematics, $g_{pp}=0.7$ and $g_A=0.4$

ccQRPA for ¹⁰⁰Ru wave functions g_{ph} fixed to reproduce E(2⁺)=539.5 keV, g_{pp} =1.0 and g_A =0.4 from P. Pirinen and J. Suhonen, PRC 91, 054309 (2015)

Conflict with g_A

•
$$T_{1/2}^{(2
u)}$$
=(7.1±0.4)×10¹⁸ yr $ightarrow$ experiment

•
$$T_{1/2}^{(2
u)} =$$
7.66 $imes$ 10¹⁸ yr $o g_A = 0.6$

•
$$T_{1/2}^{(2\nu)} \sim 3 \times$$
 experiment $\rightarrow g_A = 0.4$

 \hookrightarrow Best reproduction of TAGS results!!

TAGS technique

- 2 Experiments at IGISOL
- 3 Reactor physics
- A Nuclear astrophysics
- 5 Collective modes
- 6 Double β decay

・ 何 ト ・ ヨ ト ・ ヨ ト

 $\bullet\,$ The TAGS technique provides $I_\beta\,$ free of Pandemonium

イロト イボト イヨト イヨ

- The TAGS technique provides I_{β} free of Pandemonium
- IGISOL: high purity beams thanks to JYFLTRAP

▲ 同 ト ▲ 国 ト

- $\bullet\,$ The TAGS technique provides I_β free of Pandemonium
- IGISOL: high purity beams thanks to JYFLTRAP
- **Improvement** of reactor antineutrino and reactor decay heat summation calculations

- The TAGS technique provides I_{β} free of Pandemonium
- IGISOL: high purity beams thanks to JYFLTRAP
- **Improvement** of reactor antineutrino and reactor decay heat summation calculations
- I_{β} to **constrain** nuclear models: shape of parent nucleus, astrophysics, double beta-decay, collective modes...

- The TAGS technique provides I_{β} free of Pandemonium
- IGISOL: high purity beams thanks to JYFLTRAP
- **Improvement** of reactor antineutrino and reactor decay heat summation calculations
- I_{β} to **constrain** nuclear models: shape of parent nucleus, astrophysics, double beta-decay, collective modes...
- **Sensitivity** to I_{β} followed by γ de-excitation above S_n

- The TAGS technique provides I_{β} free of Pandemonium
- IGISOL: high purity beams thanks to JYFLTRAP
- **Improvement** of reactor antineutrino and reactor decay heat summation calculations
- I_{β} to **constrain** nuclear models: shape of parent nucleus, astrophysics, double beta-decay, collective modes...
- **Sensitivity** to I_{β} followed by γ de-excitation above S_n
- Future TAGS experiments at IGISOL:

I241: 10 days beam timeI248: 10 days beam time

DTAS first experiments collaborators

V. Guadilla^{1,3}, A. Algora¹, J. L. Taín¹, J. Agramunt¹, J. Aysto², J. A. Briz³, A. Cucoanes³, T. Eronen², M. Estienne³, M. Fallot³, L. M. Fraile⁴, E. Ganioglu⁵, W. Gelletly⁶, D. Gorelov², J. Hakala², Z. Issoufou³, A. Jokinen², M. D. Jordán¹, A. Kankainen², V. Kolhinen², J. Koponen², M. Lebois⁷, T. Martínez⁸, M Monserrate¹, A. Montaner-Pizá¹, I. Moore², E. Nácher⁹, S. Orrigo¹, H. Penttilä², I. Pohjalainen², A. Porta³, J. Reinikainen², M. Reponen², S. Rinta-Antila², B. Rubio¹, T. Shiba³, V. Sonnenschein², A. A. Sonzogni¹⁰, E. Valencia¹, V. Vedia⁴, A. Voss², J. Wilson⁸

¹IFIC (CSIC-Univ. Valencia), Valencia, Spain,²University of Jyväskylä, Jyväskylä, Finland, ³Subatech, CNRS/INP2P3, Nantes, France, ⁴Universidad Complutense de Madrid, Madrid, Spain, ⁵Istanbul University, Istanbul, Turkey, ⁶University of Surrey, Guildford, United Kingdom, ⁷IPNO, Orsay, France, ⁸CIEMAT, Madrid, Spain, ⁹IEM-CSIC, Madrid, Spain, ¹⁰NNDC, Brookhaven National Laboratory, Upton, New York, USA

Thank you very much for your attention!

THE ULAM PROGRAMME

PPN/ULM/2019/1/00220

◇□▶ ◇□▶ ◇□▶ ◇□▶ ◇□ ▼ ◇○◇