Możliwości wytworzenia pierwiastków o Z > 118
national CENTRE FOR NUCLEAR RESEARCH
ŚW I ERK

'Discovery of a chemical element is the experimental demonstration, beyond reasonable doubt, of the existence of a nuclide with an atomic number Z not identified before, existing for at least $10^{-14} \mathrm{~s}$.

Cross section drops 7 orders of magnitude with the change from Ca to Zn.
$Z=113,22 \mathrm{fb}$, only 3 atoms in 576 days of irradiation

No heavier target than Cf $(Z=98)$ is available.

Es $(Z=99)$ is too radioactive but can possibly be used.

Experiments with $50 \mathrm{Ti}, 54 \mathrm{Cr}, 58 \mathrm{Fe}$ and 64Ni beams have not succeeded so far.

Sigurd Hofmann, Sergey N. Dmitriev, Claes Fahlander, Jacklyn M. Gates, James B. Roberto and Hideyuki Sakai Report of the 2017 Joint Working Group of IUPAC and IUPAP, Pure Appl. Chem. 2020; 92(9): 1387-1446

Hot fusion synthesis experiments leading to elements 119 and 120

```
48Ca + 254Es -> > 302119* Limit of 300 nb R. W. Lougheed et al., Phys. Rev. C 32, 1760 (1985)
50}\textrm{Ti}+\mp@subsup{}{}{249}\mathbf{Bk}->\mp@subsup{}{}{299}119* Limit of 65 fb J. Khuyagbaatar et al., Phys. Rev. C 102, 064602 (2020
51}\textrm{V}+\mp@subsup{}{}{248}\textrm{Cm}->\mp@subsup{}{}{299}119* ongoing experiment in RIKE
50}\mathbf{Ti}+\mp@subsup{}{}{249}\mathbf{Cf}->\mp@subsup{}{}{299}120* Limit of 200 fb J. Khuyagbaatar et al., Phys. Rev. C 102, 064602(2020)
58Fe + 244Pu -> +302120* Limit of 400 fb Yu. Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009)
64}\mathbf{Ni}+\mp@subsup{}{}{238}\mathbf{U}->\mp@subsup{}{}{\mathbf{302}120* Limit of 90 fb S. Hoffmann et al., GSI Report 2009-1
\mp@subsup{}{}{54}\textrm{Cr}+\mp@subsup{}{}{248}\mathbf{Cm}->\mp@subsup{}{}{302120* Limit of 580 fb S. Hoffmann et al., Eur. Phys. J. A 52, 180 (2016)}
```

Different mass - angle correlations and different TKE

W. J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, PRC 2005
T. Cap et al., PRC 2011
K. Siwek-Wilczyńska et al. PRC 2012
T. Cap et al., PRC 2013
K. Siwek-Wilczyńska et al. PRC 2019

$$
\text { C } 2019
$$

FBD (fusion-by-diffusion)

Synthesis of SHN can be described as a $\mathbf{3}$ step process:

$$
\sigma_{E R}=\sigma_{c a p} P_{f u s} P_{s u r v}
$$

$$
\sigma_{\mathrm{ER}}=\pi \hbar^{2} \sum_{l=0}^{\infty}(2 l+1) T(l) \times P_{\mathrm{fus}}(l) \times P_{\mathrm{surv}}^{x \mathrm{n}}(l)
$$

ℓ-dependent FBD

क्षे


```
Properties of heaviest nuclei with 98 \leqZ \leq 126 and 134\leqN\leq192
```



```
a Institute of Physics, University of Zielona Góra, Szafrana 4a, 65-516 Zielona Góra, Poland
```

${ }^{\text {b }}$ National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

Ground-state and saddle-point shapes and masses for 1305 heavy and superheavy nuclei

including odd-A and odd-odd systems. Static fission barrier heights, one- and two-nucleon separation energies, and $Q \alpha$ values.

Microscopic-macroscopic method with the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy taken as the smooth part.

Ground-state shapes and energies are found by the minimization over seven axially-symmetric deformations. A search for saddle-points was performed by using the "imaginary water flow" method in three consecutive stages, using five- (for nonaxial shapes) and seven-dimensional (for reflection-asymmetric shapes) deformation spaces.

Good agreement with the experimental data for actinides

capture cross section for ${ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm}$

M. Tanaka et al.: $B_{0}=225.6 \pm 0.2 \mathrm{MeV}$

Data taken from:
M. Tanaka et al., J. Phy. Soc. Jpn 91, 084201 (2022)

Fit to data:

$$
B_{0}=225.53 \pm 0.13 \mathrm{MeV}
$$

$\omega=8.71 \pm 0.18 \mathrm{MeV}$
FBD model:

$$
B_{0}=229.03 \mathrm{MeV}
$$

$$
\omega=6.90 \mathrm{MeV} \text { (only } \beta_{2} \mathrm{Cm} \text { deformation) }
$$

capture cross section

$$
D(B)=\frac{1}{\sqrt{2 \pi} \omega} \exp \left(-\frac{\left(B-B_{0}\right)^{2}}{2 \omega^{2}}\right)
$$

$$
\sigma_{\text {cap }}\left(E_{\mathrm{c} . \mathrm{m} .}\right)=\pi R^{2} \frac{w}{\sqrt{2 \pi} E_{\mathrm{c} . \mathrm{m} .}}\left[\sqrt{\pi} X(1+\operatorname{erf} X)+\exp \left(-X^{2}\right)\right]
$$

T. Tanaka et al., J. Phy. Soc. Jpn 87, 014201, 2018
T. Tanaka et al., PRL 124, 052502, 2020

L is the effective elongation (along the fusion path)
$P_{\text {fus }}$ is calculated by solving 1D Smoluchowski

Diffusion Equation

$$
P_{f u s}(l)=\frac{1}{2}\left\{\begin{array}{l}
1+\operatorname{erf} \sqrt{\frac{H(l)}{T}}: L_{i n j}<L_{s p} \\
1-\operatorname{erf} \sqrt{\frac{H(l)}{T}}: L_{i n j} \geq L_{s p}
\end{array}\right.
$$

$\boldsymbol{H}(\boldsymbol{l})$ - the function of angular momentum and bombarding energy
\boldsymbol{T} - the temperature depends on available energy

The distance between the nuclear surfaces of two colliding nuclei at the injection point $s_{\text {inj }}$ is the only adjustable parameter of the model.

$s_{i n j}$ distance was parametrized by analyzing 27 cold fusion reactions.

Higher partial waves l $=$

Higher rotational energy

$$
=
$$

Higher barrier $H(l)$
$=$
Lower Pfus(l)

Reactions: ${ }^{48} \mathrm{Ca},{ }^{50} \mathrm{Ti},{ }^{54} \mathrm{Cr}+{ }^{208} \mathrm{~Pb}$

Review Progress in Particle and Nuclear Physics 118 (2021) 103856
Experimental studies of the competition between fusion and quasifission in the formation of heavy and superheavy nuclei
D.J. Hinde ${ }^{*}$, M. Dasgupta, E.C. Simpson

Department of Nuclear Physics, Research School of Physics, Australian National University, ACT 2601, Australia

Mechanisms Suppressing Superheavy Element Yields in Cold Fusion Reactions
Banerjee et al., PRL 122, 232503 (2019)
(a)

(b)

Fusion probability averaged over l
Tangent configuration of projectile and target
$<P_{\text {fus }}>=\frac{1}{\left(l_{\max }+1\right)^{2}} \sum_{l=0}^{l_{\max }}(2 l+1) \times P_{\text {fus }}(l)$

Below B_{0}, the $<P_{\text {fus }}>$ growth comes from the reduction in the height of the internal barrier opposing fusion.

$$
s_{\text {injection }}>0 \mathrm{fm}
$$

The $<P_{\text {fus }}>$ saturation above B_{0} results from suppression of the contributions from higher partial waves and can be linked to the critical angular momentum.

The difference between rotational energies in the fusion saddle and the contact (sticking) configuration plays a major role in CN formation at energies above B_{0}.

$$
B_{0} \text { - entrance channel barrier (Coulomb + Nuclear potential) }
$$

Fusion probability averaged over l
$\left\langle P_{\text {fus }}\right\rangle=\frac{1}{\left(l_{\text {max }}+1\right)^{2}} \sum_{l=0}^{l_{\text {max }}}(2 l+1) \times P_{\text {fus }}(l)$

Diffusion as a possible mechanism controlling the production of superheavy nuclei in cold fusion reactions
T. Cap, M. Kowal, and K. Siwek-Wilczyńska

Phys. Rev. C 105, L051601 - Published 16 May 2022

Blue line - Pfus at the predicted optimal bombarding energies for the $1 n$ channel

The Fusion-by-Diffusion model as a tool to calculate cross sections for the production of superheavy nuclei
$<P_{\text {surv }}>=\frac{1}{\left(l_{\max }+1\right)^{2}} \sum_{l=0}^{l_{\max }}(2 l+1) \times P_{\text {surv }}(l) \quad$ Fusion probability averaged over l

For hot Fusion reactions

$P_{\text {surv }}$ is calculated using Monte Carlo methods:

$$
P_{\text {surv }}^{x \mathrm{n}}(l)=\prod_{i=1}^{x}\left(\frac{\Gamma_{\mathrm{n}}}{\Gamma_{\mathrm{n}}+\Gamma_{\mathrm{f}}}\right)_{i} \times P_{<}
$$

Competition between neutron emission and fission

Weisskopf formula

$$
\Gamma_{\mathrm{n}}=\frac{g m_{\mathrm{n}} \sigma_{\mathrm{n}}}{\pi^{2} \hbar^{2} \rho_{\mathrm{G} . \mathrm{S} .}} \int_{0}^{X_{\mathrm{n}}} \rho_{\mathrm{n}}\left(X_{\mathrm{n}}-\varepsilon_{\mathrm{n}}\right) \varepsilon_{\mathrm{n}} \mathrm{~d} \varepsilon_{\mathrm{n}}
$$

Transition-state theory

$$
X_{\mathrm{n}}=E^{*}-B_{\mathrm{n}}-E_{\mathrm{rot}}^{A-1}(l)
$$

$$
X_{\mathrm{f}}=E^{*}-B_{\mathrm{f}}-E_{\mathrm{rot}}^{s p}(l)
$$

$$
\Gamma_{\mathrm{f}}=\frac{1}{2 \pi \rho_{\mathrm{G} . \mathrm{S} .}} \int_{0}^{X_{\mathrm{f}}} \rho_{\mathrm{f}}\left(X_{\mathrm{f}}-\varepsilon_{\mathrm{f}}\right) \mathrm{d} \varepsilon_{\mathrm{f}}
$$

Properties of heaviest nuclei with $98 \leq Z \leq 126$ and $134 \leq N \leq 192$
P. Jachimowicz ${ }^{\text {a }}$, M. Kowal ${ }^{\text {b,* }}$, J. Skalski ${ }^{\text {b }}$

Adiabatic fission barriers
T. Cap, M. Kowal, and K. Siwek-Wilczyńska, EPJ

ity

Yu. Ts. Oganessian and V. K. Utyonkov. Rep. Prog. Phys. 78(3):036301, 2015
T. Cap, M. Kowal, and K. Siwek-Wilczyńska, EPJ

Yu. Ts. Oganessian and V. K. Utyonkov. Rep. Prog. Phys. 78(3):036301, 2015

Systematic decrease of the $3 n$ and $4 n$
ER cross sections for the synthesis of the elements $114-118$ is reproduced in the model.

Is synthesis of elements 119 and 120 possible?
Can we use the same approach for ${ }^{50} \mathrm{Ti}$ and ${ }^{51} \mathrm{~V}$?
The cross section for ${ }^{48} \mathrm{Ca}+{ }^{254} \mathrm{Es}$ should be around 100 fb .
T. Cap, M. Kowal, and K. Siwek-Wilczyńska, EPJ

守

$$
\begin{aligned}
& { }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm} \rightarrow{ }^{296} 119+3 \mathrm{n} \\
& { }^{50} \mathrm{Ti}+{ }^{247} \mathrm{Bk} \rightarrow{ }^{296} 119+3 \mathrm{n} \\
& \text { 292 } \mathrm{Ts}-\text { new isotop }
\end{aligned}
$$

20 (Ubo) (295) (296) (298) (299)

118 Og 224
117 T5 29329

101 | Md 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Neutron Number N

$$
\begin{aligned}
& { }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm} \rightarrow{ }^{295} 119+4 \mathrm{n} \\
& { }^{50} \mathrm{Ti}+{ }^{247} \mathrm{Bk} \rightarrow{ }^{295} 119+4 \mathrm{n} \\
& { }^{291} \mathrm{Ts}-\text { new isotop }
\end{aligned}
$$

120 (Ubo) (295) (296) (298) (299)

118 O5 224
147) T5 293294

RIKEN GARIS(Gas-filled Recoil Ion Separator)

${ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm}$

Target from ORNL: ${ }^{248} \mathrm{Cm}(97 \%), 500 \mu \mathrm{~g} / \mathrm{cm}^{2}$
Projectile: ${ }^{51} \mathrm{~V}$, up to $5 \mathrm{p} \mathrm{\mu A}$
GARIS transmition: 80\%

Figure 13: Assembled TASCA target wheel with four target segments, containing a total amount of about $12 \mathrm{mg}{ }^{249} \mathrm{Bk}$, deposited by molecular plating on $2 \mu \mathrm{~m} \mathrm{Ti}$ backings [144]. The total ${ }^{249} \mathrm{Bk} \mathrm{B}^{-}$-activity was $6 \cdot 10^{11} \mathrm{~Bq}$ at the beginning of irradiation [86]. (Reprinted by permission from Springer nature Customer Service Centre GmbH: Nature Springer J. Radioanal. Nucl. Chem. 299, 1081-1804 (2014), "Preparation of actinide targets for the synthesis of the heaviest elements", https://doi.org/10.1007/s10967-013-2616-6, J. Runke et al., © 2014).

Figure 14: Photographies (top and bottom left) and SEM pictures (center and right) of a $500 \mu \mathrm{~g} / \mathrm{cm}^{2}$ La target on a TASCA target frame.

FBD model:
M. Tanaka et al., J Phys. Soc. Jpn. 91, 084201 (2022)

$$
\begin{aligned}
& B_{0}=229.03 \mathrm{MeV} \\
& \omega=6.90 \mathrm{MeV} \\
& E^{*}(\mathrm{MeV}) \\
& E^{*}(\mathrm{MeV})
\end{aligned}
$$

$$
\sigma=10 \mathrm{fb}=>1 \text { event in } 200 \text { days }
$$

Exp. Limit of 65 fb J. Khuyagbaatar et al., Phys. Rev. C 102, 064602 (2020)

क
$\sigma=10 \mathrm{fb}$ => 1 event in 200 days

Evaporation residue cross sections

Reactions ${ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm}$ and ${ }^{50} \mathrm{Ti}+{ }^{249} \mathrm{Bk}$ both lead to the same compound nucleus ${ }^{299} 119$, but with different cross sections.
${ }^{48}$ Ca systematics
$\begin{array}{lll}{ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm} & \sigma_{\text {MAX }}(3 \mathrm{n})=20 \mathrm{fb} & \sigma_{\text {MAX }}(4 \mathrm{n})=15 \mathrm{fb} \\ { }^{50} \mathrm{Ti}+{ }^{249} \mathrm{Bk} & \sigma_{\text {MAX }}(3 \mathrm{n})=250 \mathrm{fb} \quad \sigma_{\operatorname{MAX}}(4 \mathrm{n})=100 \mathrm{fb}\end{array}$

Lower limit - more probable values

$$
\begin{array}{ll}
\sigma(3 \mathrm{n})=2 \mathrm{fb} & \sigma(4 \mathrm{n})=2 \mathrm{fb} \\
\sigma(3 \mathrm{n})=20 \mathrm{fb} & \sigma(4 \mathrm{n})=15 \mathrm{fb}
\end{array}
$$

Entrance channel effect

${ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm}$ is more „charge symmetric" than ${ }^{50} \mathrm{Ti}+{ }^{249} \mathrm{Bk}$ \rightarrow greater Coulomb repulsion (8 MeV difference in B_{0})

This makes the fusion cross section for the ${ }^{51} \mathrm{~V}+{ }^{248} \mathrm{Cm}$ reaction one order of magnitude smaller than for the ${ }^{50} \mathrm{Ti}+{ }^{249} \mathrm{Bk}$ reaction at the excitation energies less than 45 MeV ($3 n$ and $4 n$ channel).

First experiment at the Super Heavy Element Factory: High cross section of ${ }^{288} \mathrm{Mc}$ in the ${ }^{243} \mathrm{Am}+{ }^{48} \mathrm{Ca}$ reaction and identification of the new isotope ${ }^{264} \mathrm{Lr}$
Yu. Ts. Oganessian et al.
Phys. Rev. C 106, L031301 - Published 29 September 2022

Search for element 120 in 2023? $54 \mathrm{Cr}+248 \mathrm{Cm}$

$$
\begin{gathered}
\sigma(3 n), \sigma(4 n)<1 \mathrm{fb} \\
\text { Low } P_{\text {surv }}
\end{gathered}
$$

Z PEWNOŚCIA BEDA TWORZONE KOLEJNE. MOŻE PEWNEGO DNIA TO TY JAKIS ODKRYJESZ! TYLKO JAK GO NAZWIESZ?

POWODZENIA!

Thank you for your attention

NATIONAL
CENTRE
FOR NUCLEAR
RESEARCH
ŚWIERK
www.ncbj.gov.pl

