Mapping of fragmented $vf_{5/2} \rightarrow \pi f_{7/2}$ transitions in neutron-rich Co isotopes

Shintaro Go Kyushu University

Nuclear Physics Seminar (online), Warsaw University 12/03/2020

About me

Shintaro Go

Assistant Professor, Kyushu University, Japan Ph.D. in Physics, University of Tokyo, Japan

2014.4-2017.3 Research associate in University of Tennessee, USA

University of Tennessee, Knoxville

Oak Ridge National Laboratory

Great Smokey Mountains National Park

Cultural Slides : Kyushu University

Kyushu University (九州大学: "Nine-State" University)

4th Imperial Universities in Japan ~16000 students Largest campus in Japan (2.4 km²)

Cultural Slides : Kyushu University

Kyushu University (九州大学: "Nine-State" University) In the past, there are 9 states in Kyushu (currently 7 prefectures)

4th Imperial Universities in Japan ~16000 students Largest campus in Japan (2.4 km²)

https://mag.japaaan.com/archives/85504

Cultural Slides : Kyushu University

Kyushu University (九州大学: "Nine-State" University)

4th Imperial Universities in Japan ~16000 students Largest campus in Japan (2.4 km²)

Top global university Japan :https://tgu.mext.go.jp/universities/kyushu-u/index.html

Cultural Slides: Tandem accelerator at Kyushu University

- AMS, Accelerator Mass Spectroscopy
- Experiments for undergraduate students

Cultural Slides: Superheavy element research in Kyushu University

Our group is strongly involved in the new element search at RIKEN, Japan

Kosuke Morita Prof. at Kyushu Univ.

num 1	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 HO Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.05	71 Lu Lutetin 174.97
um	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 ES Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrenc (266)

Mapping of fragmented $vf_{5/2} \rightarrow \pi f_{7/2}$ transitions in neutron-rich Co isotopes

Shintaro Go Kyushu University

Nuclear Physics Seminar (online), Warsaw University 12/03/2020

Mapping of fragmented $\nu f_{5/2} \rightarrow \pi f_{7/2}$ transitions in the ⁷³Co \rightarrow ⁷³Ni decay

S. Go^[6], ^{1,2} <u>R. Grzywacz</u>, ^{1,3} <u>C. Mazzocchi</u>, ⁴ S. N. Liddick, ^{5,6} M. Alshudifat, ⁷ J. C. Batchelder, ⁸ T. Baumann, ⁵ <u>A. A. Ciemny</u>, ⁴ T. N. Ginter, ⁵ C. J. Gross, ³ <u>K. Kolos</u>, ⁹ <u>A. Korgul</u>, ⁴ S. V. Paulauskas, ¹ C. J. Prokop, ^{5,6} M. M. Rajabali, ^{10,11} <u>K. P. Rykaczewski</u>, ³ S. Taylor, ¹ and Y. Xiao¹ ¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ²Department of Physics, Kyushu University, Fukuoka 819-0395, Japan ³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁴Faculty of Physics, University of Warsaw, PL 02-093 Warszawa, Poland ⁵National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁶Department of Chemistry, Michigan State University, Mafraq 25113, Jordan ⁸Department of Nuclear Engineering, University of California, Berkeley, California 94702, USA ⁹Lawrence Livermore National Laboratory, Livermore, California 94551, USA ¹⁰Department of Physics, Tennessee Technological University, Cookeville, Tennessee 79409, USA ¹¹TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada

(Received 5 May 2020; revised 13 September 2020; accepted 13 October 2020; published 29 October 2020)

Excited states in ^{73,75}Ni were investigated through the β decay of ^{73,75}Co in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). The experimental results extended the level scheme of ⁷³Ni to 3.2-MeV excitation energy and provided the experimental information on excited states in ⁷⁵Ni. The β -delayed neutron branching ratio for ⁷³Co was obtained. The experimental results are discussed in comparison with shell-model calculations.

DOI: 10.1103/PhysRevC.102.044331

Achieved by excellent collaborators in/from Poland!

Mapping of fragmented $\nu f_{5/2} \rightarrow \pi f_{7/2}$ transitions in the ⁷³Co \rightarrow ⁷³Ni decay

S. Go^{1,2} R. Grzywacz,^{1,3} C. Mazzocchi,⁴ S. N. Liddick,^{5,6} M. Alshudifat,⁷ J. C. Batchelder,⁸ T. Baumann,⁵ A. A. Ciemny,⁴ T. N. Ginter,⁵ C. J. Gross,³ K. Kolos,⁹ A. Korgul,⁴ S. V. Paulauskas,¹ C. J. Prokop,^{5,6} M. M. Rajabali,^{10,11} K. P. Rykaczewski,³ S. Taylor,¹ and Y. Xiao¹ ¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ²Department of Physics, Kyushu University, Fukuoka 819-0395, Japan ³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁴Faculty of Physics, University of Warsaw, PL 02-093 Warszawa, Poland ⁵National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁶Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA ⁷Department of Physics, Al al-Bayt University, Mafrag 25113, Jordan ⁸Department of Nuclear Engineering, University of California, Berkeley, California 94702, USA ⁹Lawrence Livermore National Laboratory, Livermore, California 94551, USA ¹⁰Department of Physics, Tennessee Technological University Cookerille Tennessee • What are $vf_{5/2} \rightarrow \pi f_{7/2}$ transitions? (Received 5 May 2020; revised 13 Septer • What can we learn from neutron-rich Co decays?

Excited states in ^{73,75}Ni were investigated • Why is the "Mapping" important? National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). The experimental results extended the level scheme of ⁷³Ni to 3.2-MeV excitation energy and provided the experimental information on excited states in ⁷⁵N If you have questions during my talk, feel free to ask!

DOI: 10.1103/PhysRevC.102.044331

Achieved by excellent collaborators in/from Poland!

Schematic view of Beta-decay

β⁻ decay

β-y spectroscopy can characterize low-excited states in nuclei

What can we learn from decay spectroscopy?

⁶⁰Co standard Gamma-source

1	60 C	C
	Q _{β-} =2823	
	99.925%	
	<0.0022%	2
	0.057%	

https://en.wikipedia.org/wiki/Cobalt-60

- Half-life $T_{1/2} = 5.27$ year
- Excited states of ⁷⁰Ni (2+,4+ ...)
- Decay within β -decay energy window (Q_{β} = 2.823 MeV)
- Strong branching ratios for allowed transitions $(5^+ \rightarrow 4^+)$

How do the excited states and decay properties change in extremely neutron-rich nuclei?

→Accelerator facilities can provide neutron-rich Co nuclei

Introduction : Nuclear Shell Structure

Krane, Introductory Nuclear Physics

Magic numbers were explained by introducing LS-interaction

<u>2, 8, 20, 28, 50, 82, 126...</u>

New accelerator facilities started providing nuclei far from stability

Mayer and Jense

Recent experimental works revealed Disappearance of the magic number Occurrence in the new stability

How do the magic number and stability change in extremely neutron-rich nuclei?

)	e	n

"New" magic number in neutron-rich Ca isotopes

Occurrence of new stability (magic number) at N=34

level structure of ⁵⁴Ca

Attractive interaction between $vf7/2-\pi f5/2$ orbital reduced by removing f7/2 protons

R. Taniuchi et al., Nature (2019)

Spectroscopic data could provide information on the nuclear shell-structure

Frontier of neutron-rich Ni isotopes

Neutron number

Decay spectroscopy around Ni isotopes

Excited states in Ni isotopes have been extensively studied by beta-gamma spectroscopy

What have we learned from the decay of Co isotopes?

"Very simplified" shell-structure still explains qualitative decay properties

Gamow-Teller (allowed) transitions observed in low-E states

- significant β decay intensities : ⁷³Co (7/2-) to ⁷³Ni (5/2-)

M. M. Rajabali et al., PRC (2012)

MSU/NSCL : Michigan State University, National Superconducting Cyclotron Laboratory

Investigation on beta-decay of ⁷³Co and ⁷⁵Co was conducted at MSU/NSCL

Experimental details at MSU/NSCL

Primary beam: ⁸⁴Se (140 MeV/u) Particle Identification : **ΔE-TOF method** Space-Time correlation for implant and beta : GeDSSD γ-detection : Clover Ge detectors ×8

GeDSSD

N. Larson et al., NIM A (2013).

GeDSSD

- 9 cm circular disk
- 1 cm thick
- 16 strips both in front and back

New level scheme for ⁷³Ni in this work

Level scheme was updated up to 3.2 MeV

To construct the level scheme...

- Transition energy
- γ-γ coincidence analysis
- Half-life analysis

gamma-ray spectra by Clover Ge detectors

New level scheme for ⁷⁵Ni in this work

First Report on the first excited state of ⁷⁵Ni

very tough analysis was needed to extract this spectrum...

Shell-model calculations to interpret the obtain levels

⁷³Ni

Shell model calculations

- ⁴⁰Ca core
- *fpgpn* interaction

Same as ref. A. Spyrou et al., PRL (2016)

Excited levels and B(GT) strength distribution

 \rightarrow What is the detail of the fragmented transition strength?

Low-excited states and the B(GT) values were reproduced relatively well in the calculations

Investigation on the relatively high-excited states

Excitation energies and B(GT) were investigated by changing energy difference of f5/2-p3/2 orbital

Selectivity of β-decay experiments could state the structural sensitivity with theoretical calculations!

- Reproduced mutitiple 5/2- states well
- Weak energy sensitivity for relative splitting
- Level crossing between second and third 5/2-
- <u>Strong variation of B(GT) distributions</u>

Rapid change of configuration was observed

Systematics of level structure in neutron-rich Ni isotopes in calculations

More detailed predicted levels were studied by different interactions

Systematics of level structure in neutron-rich Ni isotopes in calculations

What would we expect in the decay of very-neutron-rich ⁷⁷Co?

- The g.s. of ⁷⁷Co : (7/2-) The g.s. of ⁷⁷Ni : (9/2+)
- The allowed transition dose not occur between the ground states
 - Neutron-separation energy Sn = 3240(640) keV
 - 5/2- state is not predicted below 4 MeV
- The transition strength is above neutron-threshold energy,
- may result in the strong neutron emission in the β-decay

What would we expect in the decay of very-neutron-rich ⁷⁷Co?

NR

transitions

The measurement of beta-delayed neutron-emission is important

fpgpn predictions

- strong neutron emission
- jj44pna predictions
- High-energy M2 transition
- E2 transition to isomeric states (1/2-)

What kind of measurement is important?

Beta-delayed neutron measurement project (BRIKEN at RIKEN RIBF)

Neutron-time-of flight measurement with β - γ spectroscopy

Neutron-energy spectroscopy with neutron time-of-flight measurements

Ge detector (Gamma-ray detection)

Developed by University of Tennessee Group

Gamow-Teller transitions could be expected in several nuclei

Ex. Strong neutron emission is expected in 54K decay

 $54 \text{K} \rightarrow 54 \text{Ca}$ **f**_{5/2} **g**9/2 **P**1/2 **f**_{5/2} **P**3/2 **P**1/2 **f**_{7/2} **P**3/2 (20)~6 MeV (28)**f**_{7/2} **S**1/2 **d**_{3/2} (20)**S**1/2 **d**5/2 **d**_{3/2} Neutron Proton

Shell-model calculations

Courtesy R. Grzywacz

Intersting works above neutron-separation energies

Several interesting phenomena have been observed above neutron threshold energies

<u>Strong n-y competition</u> Strong 1n emission above Sn energy (70Co) from 2n unbound states (86,87Ga) ³He counter array (BRIKEN) at RIKEN Total Absorption γ Spectroscopy (SuN) §100 P1n GT (cutoff) branching ratio P1n GT+FF (cutoff) P1n GT+FF (stat.) P1n EXP Exp - SuN uncertainty 50 ··· QRPA - spherical P2n GT (cutoff) P2n GT+FF (cutoff) Neutron 🛠 P2n GT+FF (stat.) -O- P2n EXP Neutron branching ratio (%) ORP/ (b) P1n QRPA P1n QRPA+HF P1n EXP 50 -A- P2n QRPA -V- P2n QRPA+HF 3 5 6 8 4 Energy (MeV) O P2n EXP

A. Spyrou et al., PRL (2016)

R. Yokoyama et al., PRC(R) (2019)

Neutron number N

- β - γ spectroscopy on neutron-rich ^{73,75}Co at MSU/NSCL
- <u>New excited levels for 73,75</u><u>Ni</u> were obtained
- Fragmented strength distribution was observed in the decay of $^{73}Co \rightarrow ^{73}Ni$
- <u>The multiple 5/2</u>: <u>states were investigated</u> via shell-model calculations
- Possibility of <u>strong-neutron emission</u> in some nuclei (⁷⁷Co, ⁵⁴K…)
 - More accurate <u>mapping of GT transitions</u> in less neutron-rich nuclei is important
- Decay above neutron threshold is now extensively studied

Dziękuję za zaproszenie i Waszą uwagę!