Structure of Ca isotopes between doubly closed shells

Simone Bottoni

Università degli Studi di Milano and INFN

Warsaw, Mar. 4th 2021

Collaboration

S. Leoni, S. Bottoni, G. Bocchi, G. Benzoni, A. Bracco, F. Camera, G. Colombi, F.C.L. Crespi, L. Iskra, B. Million, C. Porzio, S. Ziliani G. Colò, P.F. Bortignon Università degli Studi di Milano and INFN, Milano, Italy B. Fornal, N. Cieplicka-Orynczak et al. Institute of Nuclear Physics, PAN, Krakow, Poland C. Michelagnoli, U. Köster, F. Kandzia, Y-H. Kim, M. Jentschel, P. Mutti, T. Reygadas, T. Soldner et al. Institut Laue-Langevin, Grenoble, France N. Marginean, C. Mihai, C. Costache, R.E. Mihai, S. Pascu, L. Stan, A. Turturica et al. Horia Hulubei National Institute, Bucharest, Romania M. Sferrazza Univeristé Libre de Bruxelles, Bruxelles, Belgium J-M. Regis, J. Jolie, L. Knafla et al. Institut für Kernphysik, Univsersität zu Köln, Köln, Germany G. de France et al. GANIL, Caen, France C. Ur ELI-NP, Bucharest, Romania W. Urban et al. I N F N University of Warsaw, Warsaw, Poland Istituto Nazionale di Fisica Nucleare D. Bazzacco, D. Mengoni et al. Università degli Studi di Padova, Padova Italy A. Türler et al. **IFIN-HH** Univeristät Bern and PSI, Villigen, Switzerland Y. Niu Institut Laue-Langevin Lanzhou University, Lanzhou, China

Introduction

Evolution of complex excitations from symmetric to neutron-rich nuclei

SUPERDEFORMED AND TRIAXIAL STATES IN ⁴²Ca

K. Hadyńska et al. Phys. Rev. Lett. 117, 062501 (2016)

PARTICLE-VIBRATION COUPLING IN ⁴⁹Ca

MULTINUCLEON TRANSFER @ LNL ⁴⁸Ca+⁶⁴Ni/²⁰⁸Pb

 γ -ray spectroscopy and lifetime measurements

D. Montanari, S. Leoni, D. Mengoni et al. Phys. Lett B 697, 288 (2011)

 ${}^{49}Ca = {}^{48}Ca + 1v$

PARTICLE-VIBRATION COUPLING IN ⁴⁷Ca

MULTINUCLEON TRANSFER @ LNL ⁴⁸Ca+⁶⁴Ni/²⁰⁸Pb

D. Montanari, S. Leoni, D. Mengoni et al. Phys. Lett B 697, 288 (2011)

Counts

 ${}^{47}Ca = {}^{48}Ca + 1v^{-1}$

Ca isotopes: benchmark for different theories

NEED OF AN UNIFIED DESCRIPTION OF NUCLEAR STRUCTURE

AB INITIO METHODS

N-N interaction derived from first principles (QCD)

J. D. Holt, J. Menendez, J. Simonis, and A. Schwenk, Phys. Rev. C **90**, 024312 (2014)

DENSITY FUNCTIONAL THEORY

Energy Density Functionals based on effective interactions (Skyrme, Gogny, ...)

M. Bender, P.-H. Heenen, P.-G. Reinhard Rev. Mod. Phys. 75, 121 (2003)

SHELL MODEL CALCULATIONS

Y. Utsuno, T. Otsuka, B. A. Brown, M. Honma, T. Mizusaki, and N. Shimizu, Progr. Theor. Phys. Suppl. 196, 304 (2012)

Nuclear physics oscillations of the nucleon density

Solid state physics oscillations of the free-electron density

plasmon-electron couplings

phonon-nucleon couplings

Ca isotopes: benchmark for different theories

- No collective excitations of the core
- Large increase of configurations involved

Perturbative Particle-Vibration Coupling

from A. Bohr and B. Mottelson

- Phenomenological approach
- Weak coupling approximation

Ca isotopes: benchmark for different theories

THE HYBRID CONFIGURATION MIXING MODEL (HCM)

Microscopic model for odd-mass nuclei

G. Colò et al., Phys. Rev. C. 95, 034303 (2017)

S. Bottoni et al., to be published

SKYRME HAMILTONIAN

$$H = H_0 + V,$$

$$H_0 = \sum_{jm} \varepsilon_j a_{jm}^{\dagger} a_{jm} + \sum_{NJM} \hbar \omega_{NJ} \Gamma_{NJM}^{\dagger} \Gamma_{NJM},$$

$$V = \sum_{jmj'm'} \sum_{NJM} h(jm; j'm', NJM) a_{jm} \left[a_{j'}^{\dagger} \otimes \Gamma_{NJ}^{\dagger} \right]_{jm}$$

BASIS

Single-particle/hole states (Hartree-Fock)

Collective phonons and non collective 1p-1h excitations (Random Phase Approximation)

single particle

doubly-magic core

COUPLING VERTEX

G. Colò, H. Sagawa and P.F. Bortignon Phys. Rev. C **82**, 054307 (2010)

The experimental campaign at Institut Laue-Langevin Grenoble (France)

The Institut Laue-Langevin (ILL)

HIGH FLUX REACTOR

NEUTRONS AT ILL

 $\begin{array}{c} 1.5{\cdot}10^{15} \ neutrons/s/cm^{2} \\ (continuous \ beams) \end{array}$

Thermal Power 58.3 MW

50-day cycles

EXPERIMENTS AT ILL

FUNDAMENTAL SCIENCE:

Condensed matter physics

Material Science

Chemistry and Biology

Nuclear and Particle physics

NEUTRON-CAPTURE REACTIONS

$$J_{I'} = J_I \pm 1/2$$

$$n + X = (X + 1)$$

$$\underbrace{\mathcal{T}'_n}_{meV} + \underbrace{m_n c^2}_{GeV} + \underbrace{m_X c^2}_{GeV} = \underbrace{m_{X+1} c^2}_{GeV} + \underbrace{\mathcal{T}_{X+1}}_{<< meV} + \underbrace{E^*_{X+1}}_{MeV} + \underbrace{E^*_{X+1}}_{MeV} + \underbrace{E^*_{X+1}}_{MeV} = (m_n c^2 + m_X c^2) - m_{X+1} c^2 \equiv S_n$$

Complete low-spin γ-ray spectroscopy from the capture state to the ground state

Complementary to higher-spin spectroscopy with stable and radioactive beams

RARE AND RADIOACTIVE TARGETS

⁴¹Ca

CaCO₃

A~2 MBq

m ~ 600 μg

 $t_{1/2} \sim 10^5 y$ made in 1975 ⁴⁶Ca

Ca(NO₃)₂ (40.6 mg) Abundance 0.004%

made at PSI by A. Türler

⁴⁸Ca 60.5%

CaCO₃ (350 mg)

Abundance 0.187%

made in 1979

<u>THE EXILL CAMPAIGN (2012-2013)</u> Promoted by W. Urban – ${}^{48}Ca(n,\gamma)$ first measurement

First campaign with a large γ array and a neutron beam (cold neutrons)

HPGe detectors

LaBr:Ce scintillators

M. Jentschel et al., J. Inst. 12, 11003 (2017)

THE FIPPS PERMANENT SETUP (SINCE 2016)

thermal neutrons

HPGe clover detectors + AC shields Clover detectors from IFIN-HH (Bucharest) LaBr:Ce scintillators

C. Michelagnoli et al., EPJ 193, 04009 (2018)

EXPERIMENTAL TECHNIQUES

Recent results

PHYSICAL REVIEW C 103, 014320 (2021)

Low-spin particle-core and hole-core excitations in ^{41,47,49}Ca isotopes studied by cold-neutron-capture reactions

S. Bottoni ⁰,^{1,2,*} N. Cieplicka-Oryńczak ⁰,³ S. Leoni ⁰,^{1,2} B. Fornal ⁰,³ G. Colò ⁰,^{1,2} P. F. Bortignon,^{1,2} G. Bocchi,^{1,2} D. Bazzacco ⁴, G. Benzoni ⁰,² A. Blanc,⁵ A. Bracco ^{1,2} S. Ceruti,^{1,2} F. C. L. Crespi ^{1,2} G. de France ⁶, E. R. Gamba ^{7,2} L. W. Iskra ^{2,3} M. Jentschel ⁵ U. Köster ⁵ C. Michelagnoli ⁵ B. Million ² D. Mengoni,^{8,4} P. Mutti ⁵ Y. Niu ⁹, C. Porzio ^{1,2} G. Simpson,⁵ T. Soldner ⁵ B. Szpak,³ A. Türler,¹⁰ C. A. Ur ¹¹ and W. Urban¹²

${}^{40}Ca(n,\gamma){}^{41}Ca$ - EXILL

⁴¹Ca

$^{40}Ca(n,\gamma)^{41}Ca$ - EXILL

⁴¹Ca

41 new transitions

Simone Bottor

Comparison with HCM model

Comparison with HCM model

 ${}^{47}Ca = {}^{48}Ca + 1v^{-1}$

${}^{49}Ca = {}^{48}Ca + 1v$

$^{44}Ca(n,\gamma)^{45}Ca$ - FIPPS

⁴⁵Ca

$^{44}Ca(n,\gamma)^{45}Ca$ - FIPPS

OPEN SHELL NUCLEUS – SUPERFLUID PROPERTIES

Extension of the HCM model within quasi-particle formalism (Y. Niu)

 $^{41}Ca(n,\gamma)^{42}Ca$ - FIPPS

good statistics and selectivity already after 4 hours

K. Hadyńska *et al.* Phys. Rev. Lett. **117,** 062501 (2016)

⁴²Ca

$^{41}Ca(n,\gamma)^{42}Ca$ - FIPPS

Conclusions and future perspectives

- Evolution of complex structures along Ca isotopes
- Microscopic origin of nuclear deformations and core-coupled states
- <u>Important benchmark for different theory approaches:</u> from state-of-the-art large-scale shell-model calculations to newly-developed models (Hybrid model) which allow to reach heavier mass regions

Extensive experimental campaign at Institut Laue-Langevin

- Neutron-capture reactions with rare and radioactive targets
- High-resolution γ -ray spectroscopy and lifetime measurements
- <u>Importance of complementary experimental approaches to reach a complete</u> <u>picture of the complex world of nuclear structure</u>

(Thank you for your attention

Simone Bottoni *Università degli Studi di Milano and INFN*

