

Overview of the New Radioactive Ion Beam Accelerator Complex RAON in Korea

Byungsik Hong

Center for Extreme Nuclear Matters (CENuM), Korea University

for Rare Isotope Science Project (RISP), IBS

Outline

- **1. Overview of RISP**
- 2. Accelerator system
- 3. RI & experimental systems
- 4. Status of beam commissioning and summary

Overview of RISP

CAON Overview of Rare Isotope Science Project (RISP)

- Goal: To build a heavy-ion accelerator complex RAON for rare isotope science research
 - RAON: Rare isotope Accelerator complex for ON-line experiments
- Budget: Total KRW 1,518 B (~U\$ 1.2 B for 1 U\$=KRW 1,300) for phase I
 - Accelerator & experimental facilities: ~U\$ 400 M
 - Civil engineering & conventional facilities: ~U\$ 800 M, including ~U\$ 270 M for purchasing land
- Project period: 2011-2022 (1st phase), 2023-2029 (2nd phase for high-energy Linac)

System installation project

Development, installation, and commissioning of the accelerator systems that provides the highenergy (200 MeV/u) and high-power (400 kW) heavy-ion beams

Facility construction project

Construction of the research and supporting facility to ensure the stable operation of the heavy-ion accelerator, experimental systems, and to establish a comfortable research environment in Korea

● Providing high-quality RI beams by ISOL & IF

ISOL: direct fission of ²³⁸U by 70 MeV proton beams IF: 200 MeV/u ²³⁸U (intensity: 8.3 pμA)

Providing high-intensity neutron-rich beams

For example, ^{132}Sn with energy up to 250 MeV/u and intensity up to 10^9 particles per second

Providing more exotic RI beams

Combination of ISOL and IF

RAON Layout

5

RAON Scientific goals

RAON

Accelerator complex ISOL + In-Flight Fragmentation

Origin of Matter

- Nuclear Astrophysics
- Nuclear Matter
- Super Heavy Element Search
- High-precision Mass Measurement

Properties of Exotic Nuclei

- Nuclear Structure
- Electric Dipole Moment and Symmetry
- Nuclear Theory
- Hyperfine Structure Study

Applied Science

- Bio-Medical Science
- Material Science
- Neutron Science

13 October 2022

RIB production methods at RAON

NP Semmar, Umv. of Warsaw

RAON Expected RIBs from RAON

RAON is going to eventually combine ISOL and IF to provide more exotic RIBs.

RAON is expected to access to more neutron-rich regions of the nuclear chart.

Accelerator system

RAON Accelerator system (Overview)

- Installation and beam commissioning of the injector, SCL3 and ISOL
- Installation and machine commissioning of all experimental systems & IF separator

● Phase II (~2029)

R&D, construction, installation and beam commissioning of SCL2

CAON Accelerator system (Overview of SC Linacs)

SCL3 (Phase I)

SCL2 (Phase II)

RAON Injector system

- Two ECR IS's
 - 14.5 GHz ECR ion source
 - 28 GHz superconducting ECR ion source
- LEBT (E = 10 keV/u)
 - 10 keV/u, Dual bending magnet
 - Chopper & Electrostatic quads, Instrumentation
- RFQ (*E* = 500 keV/u)
 - 81.25 MHz, Transmission efficiency ~98%
 - CW RF power 94 kW (SSPA: 150 kW)
- MEBT (E = 500 keV/u)
 - Four RF bunchers (SSPA: 20, 15, 2 X (4 kW))
 - Simple quadrupole magnets, Instrumentation

Beam commissioning since Oct. 2020

RAON Injector beam commissioning

Parameter	Value	Cavity RE power: 51.5 kW	LEBT Beam emittance	LEBT orbit correction
[Beam Properties]		(Design ~ 39.1 kW)	(Allison scanner)	
Frequency	81.25 MHz		73000	3
Particle	H ¹⁺ to ²³⁸ U ³³⁺		50000	2
Input energy	10 keV/u			
Input current	0.4 mA		0.02	
Input emittance	0.012 cm·mrad		0.01	
Output energy	0.507 MeV/u			-1
Output emittance	0.0125 cm · mrad		-0.01 $2\pi = 0.233440$ emit n= 0.0584 alpha= 0.433	-2
Transmission	~98% (simulation)		-0.02 beta= 850.5	_3
Duty factor	100%		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∞ −4 −2 0 2 4 x [mm]

• Beams

- Ar⁹⁺ (~30 μA) & Ar⁸⁺ (~47 μA): 100 μs long pulsed beam
- Repetition rate: 1 Hz
- EPICS basis control system
- RFQ transmission
 - Measured by ACCTs in LEBT & MEBT (Error bar: 3σ)
 - Ar⁹⁺ (91.9% w/ σ=1.9%) & Ar⁸⁺ (95.4% w/ σ=1.3%)
- Energy
 - 507 keV/u by ToF using the two BPMs in MEBT

RAON SRF test facility and QC

- Processing the performance tests of SCL2 and SCL3 cavities & modules at cryogenic temperature
- Onsite test facility: 3 vertical test (VT) pits with 3 cavities per pit and 3 horizontal test (HT) bunkers
- It can cover all RAON cavities: QWR (81.25 MHz), HWR (162.5 MHz) and SSR1/SSR2 (325 MHz)

RAON SCL3 and cryoplants

- Cryomodules (CM) & warm sections were assembled in the clean booth in the tunnel.
- Total counts of particles for the size > 0.5 μm/10 min. were less than 30.

- Cryoplants
 - SCL3 (4.2 kW @ 4.5 K), SCL2 (13.5 kW @ 4.5 K)
 - Two plants combined through the distribution box.
 If one plant down, the other can be maintained cold.
 (We operate either SCL2 & 3 together or just one.)

Commissioning ongoing

Part 3.

RI & experimental systems

RAON Overview of experimental systems

RAON ISOL system

Post Linac (Charge state n+)

- Driver beam: p, $35 \le K \le 70$ MeV with $\gtrsim 50$ kW
- Target: SiC, BN, UC_x, MgO, etc. (CaO, BeO later)
- Ion Source: Surface, RILIS, Plasma

- RIB: $6 \le A \le 250$, $10 \le K \le 80$ keV, 10^8 pps (Sn), Purity > 90% @ Exp.
- Incident to RFQ with 10 keV/u
- Full remote maintenance system with TIS modularization

ISOL beamlines including subsystems were commissioned with Cs ions in 2021 (next slide).

RAON ISOL SIB commissioning

RAON ISOL SIB commissioning

RAON Cyclotron

- Specifications
 - Proton beams at 35~70 MeV
 - Maximum beam current: 0.75 mA
 - Two beamlines to the ISOL TIS bunker

- Jun. 2019: Contract with IBA
- Apr. 2020: Design finalized
- Jun. 2021: Factory Acceptance Test (FAT)
- Aug. 2021: Shipping
- Nov. 2021~Apr. 2022: Installation
- Oct. 2022: Site Acceptance Test (SAT) (plan)
- Still need to finalize the interface between cyclotron and ISOL

Cyclotron

Cyclotron beamline installation

- Korea Broad acceptance Recoil spectrometer & Apparatus
- Instrument for nuclear structure and nuclear astrophysics using stable or RI beams in the energy range of 1~40 MeV/u
 - Stable ions up to ~40 MeV/u from ECR IS (\leq 40 MeV/u for $A \leq$ 40 and \leq 20 MeV/u for $A \geq$ 100)
 - RIB production at a few MeV/u using the stable ion beams from ECR IS
 - Role of the recoil mass separator for RIBs from ISOL at beam energies less than a few MeV/u

SNACK: Silicon detector array for Nuclear AstrophysiCs study at KoBRA

13 October 2022

NP Seminar, Univ. of Warsaw

RISY

The momentum dispersion and resolving power at F1/F2/F3 agree with the expectation!

NP Seminar, Univ. of Warsaw

RAON NDPS

Beam species

Beam energy

Beam current

Bunch length

Flight length

Neutron flux

Repetition rate

Maximum

Maximum

Target

- Nuclear Data Production System
 - d+C for white neutrons
 - n intensity at the end of the collimator $\simeq 10^8$ neutrons/cm²/sec for 10 pµA
 - p+Li for monoenergetic neutrons

 $\sim 10 \ \mu A$

- n intensity at the end of the collimator $\simeq 10^5~neutrons/cm^2/sec$ for $10~p\mu A$

proton, deuteron

83 MeV for proton

C for white neutron

 $\sim 10^8 \, \text{cm}^{-2} \, \text{sec}^{-1}$ at 5 m

 $\sim 1 \text{ ns}$ (FWHM)

1 – 200 kHz

5 – 40 m

Li for monoenergetic neutron

49 MeV/u for deuteron

RAON NDPS

October 2020

July 2022

13 October 2022

NP Seminar, Univ. of Warsaw

RAON LAMPS

- Large Acceptance Multi-Purpose Spectrometer
 - Beam energies up to 250 MeV/u for ¹³²Sn with an intensity as large as 10⁸ pps
 - Comprehensive detector system to investigate the nuclear equation of state (EoS) and symmetry energy
 - All detector components and magnet were already developed, manufactured, and assembled.
 - Integration and commissioning of the whole LAMPS system is being planned at the end of 2022.

CAON TPC: Performance test with prototype

RAON TPC: Construction of real detector

CAON TPC: Drift velocity measurement by cosmic ray

- Cosmic muon trigger
 - Coincidence of two scintillators (scintillator size: 20 x 20 cm² each)
 - Trigger position : 30, 60 and 90 cm
 - Measured drift field points: 115, 125 and 135 V/cm

RAON Neutron Detector Array (NDA): Structure

RAON NDA: Performance test with prototype

- Production reaction: $p+^{7}Li \rightarrow n + ^{7}Be$
- Neutron beam flux: $1 \times 10^{10} \text{ n/sr}/\mu\text{C}$
- Neutron energy: 65 and 392 MeV
- Background neutrons above 3 MeV is < 1%</p> [NIMA 629, 43 (2011)]

- Significant energy-loss effect in the Li target at 65 MeV
- Low-energy background dominated by the 3-body decays $^{7}\text{Li}(p, n^{3}\text{He})$ ^{4}He
- Energy resolution (FWHM): 3.1% @ 392 MeV, 1.3% @ 65 MeV

RAON NDA: Performance with prototype

← Position difference between the projected hit position and the detected hit position for cosmic muons: $\Delta x_4 \equiv x_{D4,proj} - x_{D4,hit}$ ← Relative position resolution for cosmic muons for one bar: $\sigma_x = \frac{\sigma(\Delta x_4)}{1.87} = 2.0 \text{ cm}$: $R_x(\mu) = 4.8 \text{ cm}$ (FWHM)

→ Hit position difference between neighboring scintillators for neutrons with simultaneous hits: Δx_{S1} ≡ x_{D1} - x_{D2} for 10 MeV threshold and δt < 3 ns
 → Relative position resolution for neutrons for one bar:

$$\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 4.5 \text{ cm}: R_{\chi}(n) = 7.5 \text{ cm} (FWHM)$$

Comparison of performances by cosmic rays for similar configuration of neutron detectors [NIMA 927, 280 (2019)]

	LAMPS (this work)	MoNA [13]	NEBULAR [14]	LAND [15]
Dimensions (cm ³)	$10 \times 10 \times 200$	10 imes 10 imes 200	12 imes 12 imes 180	$10 \times 10 \times 200$
Time resolution (ps)	309	423	376	588
Position resolution (cm)	4.8	5.2	6.1	7.1

13 October 2022

RAON NDA: Construction

- RISP
- Installation of all modules in the frame was completed at the Sejong campus of Korea University in Dec. 2018 to test the performance.
- The whole system was dissembled and transported to the RAON site in Sindong in March and assembled again with the three additional veto walls in September in 2022.
- The fully assembled system will take the cosmic muon data at the RAON site very soon.

ToF & Trigger array (BTOF/FTOF)

BDC (left) & SC (right) in beam diagnostic vacuum chamber

Status of beam commissioning and summary

CAON Preparation of RIB production by ISOL

• Target Ion Source: Sn beam extraction using RILIS and transportation to A/q separator (Apr. 2022)

Nuclei	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn	¹¹⁹ Sn	¹²⁰ Sn	¹²² Sn	¹²⁴ Sn
Measured Current (nA)	0.243	0.152	0.360	0.161	0.450	0.097	0.102
Current Ratio (%)	15.5	9.70	23.0	10.28	28.75	6.20	6.52
Natural abundance (%)	14.54	7.68	24.22	8.59	32.58	4.63	5.79
Abundance ratio	14.79	7.83	24.71	8.76	33.23	6.32	6.65

- RI beam commissioning plan for ISOL with SiC target
 - ²⁴Na beams with an intensity of ~10⁶⁻⁸ pps (1 kW@70 MeV) in Oct.~Dec. 2022
 - ^{24-26m}Al beams produced and transported to Ultra lowenergy Expt. hall (MMS & CLS) in 2023
 - Plan to provide ²⁰⁻²⁴Na, ²²⁻²³Mg, ²⁴⁻²⁶Al and ⁸⁻⁹Li beams
- \bigcirc UC_x target from 2025
- ← Beam current ratio can be explained by the natural abundance of Sn.

RAON KoBRA beam commissioning plan

● KoBRA beam commissioning in Mar. – Jun. 2023

- RI production using quasi projectile-like fragmentation from ⁴⁰Ar in the energy range of 20~30 MeV/u
- $B\rho$ -ToF- ΔE method for PID with detectors at F0~F3

RAON Summary

- Major achievements
 - SCL3: Installation completed in 2021
 - Cryogenic plants: Cooldown and RF conditioning, beam commission started in Sep. 2022
 - ISOL: SIB transportation for all sub systems and beam lines tested in Dec. 2021
 - KoBRA: Machine commissioning done in Oct. 2021
- Near-term plan (for the next \sim 2 years)
 - Delivery of stable ¹⁶O & ⁴⁰Ar beams to KoBRA in 2023
 - Extraction of RIB from ISOL and delivery to ultra low-energy experimental hall for MMS & CLS in 2023
 - KoBRA beam commissioning experiment with RIBs for $A \leq 50$ with beam energy ≤ 20 MeV/u in 2023
 - Installation and independent commissioning of IF, LAMPS, BIS and μSR in 2023
 - Preparation of the 2nd phase for the construction of SCL2 by 2024
- Long-term plan
 - Operation of ISOL with UC_x target from 2025
 - Completion of SCL2 and stable operation of U beams at 200 MeV/u up to 80 kW (Goal: 400 kW)
 - Starting of the scientific program with ISOL and IF
 - Beam commissioning for ISOL \rightarrow SCL3 \rightarrow SCL2 \rightarrow IF

Thank you very much for your attention!