Exotic decay modes of medium-mass proton drip-line nuclei

Aleksandra Ciemny June 9th 2022

Outline

- Introduction
- Experimental technique
 - General experiment's principle
 - Detector: Optical Time Projection Chamber
- Study of neutron-deficient Ge and Zn isotopes at MSU
- Study of ^{22,23}Si at TAMU
- Summary \bullet

Introduction

Introduction - nuclei close to the proton drip-line

- Increasing β decay energy
- Decreasing separation energies Sp, S2p etc.

- Population of highly excited (particle unbound) states in daughter nuclei
- β-delayed (multi-) particle emission (βp, β2p etc.)

https://www.nndc.bnl.gov/nudat3/

- Highly competitive to deexcitation via y-emission
- Has to be taken into account while studying β-decay strength (B) distribution of highenergy, unbound states for a complete picture of the nuclear structure

Check of nuclear structure and interaction models far from stability

Competition between β-decay and particle capture shapes the rp-process path

Input for the astrophysical rp-process modeling

Abundance of the elements in the Universe

Experimental technique

- Production in projectile fragmentation reaction with thin target In-flight separation in fragment separator
- Ion-by-ion identification —> trigger
- Implantation into Optical Time Projection Chamber
- Detection of decays within active volume of the detector

Detection: Optical Time Projection Chamber

- Developed in mid 2000s at the Faculty of Physics, UW
- Study of 2p radioactivity in ⁴⁵Fe
- Successfully used for investigation of rare decay modes since then

⁴⁵Fe 2p

K. Miernik et al., PRL 99, 192501 (2007)

K. Miernik et al., Phys. Rev. C 76, 041304(R) (2007)

⁴⁵Fe β3p

⁴³Cr β3p

M. Pomorski et al., Phys. Rev. C 83, 014306 (2011)

e (\cdot)

A. A. Lis et al., Phys. Rev. C 91, 064309 (2015)

³¹Ar β3p

Detection: Optical Time Projection Chamber

- Active volume 33 cm x 20 cm x 21 cm
- Filled with gas mixture at atmospheric pressure immersed in vertical E
- Ion implantation and decay
- Electrons along the trajectories drift in E with Vdrift "downwards"
- Gating electrode (G) allows for "dual sensitivity mode" = detecting of both ion and proton
- Stack of GEM foils electrons multiplication (~10x on each foil)
- HV between GEM foils and anode (A) secondary ionisation, light emission
- CCD camera and photomultiplier tube (PMT) mounted below the polycarbonate window

Detection: Optical Time Projection Chamber

0 23.662 23.6	64

- Reconstruction of 3D trajectory:
 - CCD camera = x-y plane
 - PMT signal = light in time
 - With known v_{drift} (typically 1-1.2 cm/µs) - z-coordinate
 - Range in gas depends on energy
 - Fitting of the Bragg curve shape

OTPC's extended exposure mode

- No trigger: CCD camera running continuously frames ("implantation gate", few tens of ms)
- Trigger: current frame extended by an observation-window time ("decay gate", a few T_{1/2} long)

Study of neutron-deficient Ge and Zn isotopes at MSU

Region around 60Ge

- Region interesting from the 2p decay stud
- ⁶⁰Ge: heaviest semi-magic nucleus with th (⁶⁰Ni) that can be studied.
- Is N=28 still a magic number there?
- High Q_{EC} of ^{59,60}Ge and low separation en energetically possible decay via β-delayed (multi-) proton emission
- ^{57,58}Zn lying on rp-process path

. .			-					
ay point of view					60As	61As	62A	
he mirror nucleus						p?	p?	p?
					58Ge	59Ge > 360 ns	60Ge > 110 ns	61G 44 n
					2P ?	2Ρ? ε?	ε εp	ε = 100 εp ≈ 62
				56Ga	57Ga	58Ga	59Ga	60G 70 n
nergies in ^{59,60} Ga:				p?	p?	p?	p?	ε = 100 εp = 1. εα < 0.
54Zn 1.59 ms			55Zn 19.8 ms	56Zn 30.0 ms	57Zn 38 ms	58Zn 86 ms	59Z 182.0	
2P -		2P = 92.00%	ε = 100.00% εp = 91.00%	ε = 100.00% εp = 86.00%	ε = 100.00% εp ≈ 65.00%	ε = 100.00% εp < 3.00%	ε = 100. εp = 0.	
		52Cu	53Cu < 300 ns	54Cu < 75 ns	55Cu 27 ms	56Cu 93 ms	57Cu 196.3 ms	58C 3.204
		р	ε p	p	ε? εp?	ε = 100.00% εp = 0.40%	ε = 100.00%	ε = 100.
	50Ni 18.5 ms	51Ni 23.8 ms	52Ni 40.8 ms	53Ni 55.2 ms	54Ni 114.2 ms	55Ni 204.7 ms	56Ni 6.075 d	57N 35.60
28-	ε = 100.00% εp = 86.70% ε2Ρ	εp = 87.20% ε	ε = 100.00% εp = 31.40%	ε = 100.00% εp = 23.40%	ε = 100.00%	ε = 100.00%	ε = 100.00%	ε = 100.
-	22	23	24	25	26	27	28	29
Neutron (N) #							-	

https://www.nndc.bnl.g ov/nudat3/

Previous studies: 60Ge

- Discovered in 2005 at NSCL by Stolz et al. (78Kr beam on Be target)
 - 3 ions identified directly on basis of ToF and ΔE
 - No decay observed only lower limit on half-life estimated $T_{1/2} > 110$ ns.
 - Measured cross-section found smaller than predictions (abrasion-ablation model and EPAX2 parametrization)
 - possible reason: very short T_{1/2}
 - σ for less exotic Ge isotopes also lower than predictions (smaller discrepancy)

A. Stolz et al., Phys. Lett. B 627 (2005) 32-37

- Investigated shortly after at GANIL by Blank et al. (⁷⁰Ge beam on Ni target)
 - 4 ions identified, no decay data
 - Measured cross-sections higher than previously, but still lower than predictions

What about ⁵⁹Ge?

- Not identified before
- Properties predicted theoretically:
 - $S_p = 0.19(14)$ MeV, $S_{2p} = -1.16(14)$ MeV diproton emission"

B. Brown et al., Phys. Rev. C 65, 045802

of the decay energies: ⁵⁸Ge predicted to be the heaviest 2p-decay candidate L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C 68, 054005 (2003)

⁵⁹Ge listed as one of "the most promising candidates for the illusive

Three-body core+p+p model calculations of half-lifes as a function

Previous studies: 58Zn

- Produced and identified for the first at the Los Alamos Meson Physics Faculty in late '80s
 - The heaviest $T_z = -1$ nucleus studied until that time
 - Mass measurement performed K. K. Seth et al., Phys. Lett. B 173, 397-399 (1986)
- β decay study: ISOLDE, late '90s
 - Detection setup: HPGe detector for γ ray measurement, β telescope and a charged particle detector
 - $T_{1/2} = 86(16)$ ms measured
 - B(GT) to an excited state at 1051 keV
 - Upper limit on βp branching ratio: $b_{\beta p} < 3\%$ A. Jokinen et al., Eur. Phys. J. A 3, 271-276 (1998)
- Further research performed recently at GANIL
 - Neither new γ transitions nor βp observed
 - Half-life: $T_{1/2} = 86(2)$
 - Absolute B(F) and B(GT) calculated
 - L. Kucuk et al., Eur. Phys. J. A (2017) 53: 134

L. Kucuk et al., Eur. Phys. J. A (2017) 53: 134

Experimental details: MSU experiment

- National Superconducting Cyclotron Laboratory, MSU
- Fragmentation reaction of a ⁷⁸Kr beam (150 AMeV) on a 200 mg/cm² Be target
- A1900 separator (ion optics set individually for each of ⁵⁹⁻⁶²Ge)
- Ion-by-ion identification (ToF1,2 vs ΔE)
- Ions implanted into OTPC detector filled with 49.5% He + 49.5% Ar + 1% CO₂

Experimental details: MSU experiment

- Two independent data acquisition systems (both time-stamped):
 - DAQ1:
 - Running continuously, all ions
 - ΔE, ToF1 and ToF2 (time-to-amplitude converter)
 - Hardware gates on ∆E and ToF1 → trigger (beam off)
 - DAQ2:
 - Triggering ions only
 - PMT waveform
 - CCD image
 - Waveforms of ΔE signal from Si detector, and of both ToF1 and ToF2

- No implantation into OTPC detector

Results: Ge isotopes production cross-sections

- Smooth trend as a function of mass
- Z=60:
 - No kink (no in-flight loss of ⁶⁰Ge)
 - 4x larger σ than previous A1900 experiment (Stolz et al.)
 - Still 2x lower than Blank et al.
 - ⁷⁰Ge on Ni better choice?
- EPAX3 parametrization:
 - overestimating the σ for production of Ge isotopes (for both beam + target combinations)
 - the more exotic nucleus, the bigger discrepancy

Results: ⁶⁰Ge

- 41 events identified by the OTPC DAQ, 28 implanted into the OTPC active volume
- 19 decays observed, 11 protons stopped inside the chamber
- All of protons emitted "downwards" or nearly horizontal (due to the drift of the ions towards cathode)
- b_{βp} ≈ 100%
- $T_{1/2} = 20^{+7}_{-5}$ ms

A. A. Ciemny et al., Eur. Phys. J. A (2016) 52: 89

Results: 58Zn

- First observation of βp from ⁵⁸Zn
 - Over 36k implanted ions
 - 88 protons detected
 - 33 stopped within active volume of the detector
 - Branching ratio $b_{\beta p} = 0.7(1)\%$ (compatible with upper limit of 3% given by Jokinen et al.)

counts/100 keV

Results: 58Zn

- B(GT) strengths calculated for decay to three low-lying proton- \bullet unbound levels in ⁵⁸Cu
- B(GT) comparable to the value of 0.17(3) obtained
- βp emission should not be neglected when looking even when its probability is very small
- Results compared to B(GT) distribution calculated aproach:
 - Spherical solution for ⁵⁸Zn (2p above doubly magnetized) Peaks below 2.5 MeV and above 7 MeV
 - Solution for slightly deformed ($\beta = -0.1$) ⁵⁸Zn: Enhancement of the B(GT) at $E_x \approx 5$ MeV P. Sarriguren, Phys. Rev. C 83, 025801 (2011)

by Kucuk et al.				
ng at B(GT),	$\overline{E_x}$ MeV	$egin{array}{c} {f b}_{eta p} \ \% \end{array}$	B(GT)	Ref.
	0 1.051	0 0	0.30(13) 0.17(3)	Kucuk et al Kucuk et al
within QRPA	≈3.75	≥0.06(2)	≥0.015(8)	this work
	≈4.65	0.20(6)	0.13(6)	this work
agic ⁵⁶ Ni):	≈5.0	0.05(3)	0.05(4)	this work

A. A. Ciemny et al., Phys. Rev. C 101, 034305 (2020)

Study of 22,23Si at TAMU

Previous studies: ²²Si

- Lightest Si isotope and lightest $T_z = -3$ nucleus to date
- First identified at GANIL (161 ions) in 1987
- A decade later, ²²Si decay re-investigated at GANIL
 - β-delayed proton emission discovered
 - 4 proton transitions between 1.6 and 2.2 MeV
 - one broad proton distribution around 1 MeV
 - b_{βp} ≈ 100%
 - $T_{1/2} = 29(2)$ ms.

B. Blank et al., Phys. Rev. C 54, 572-575 (1996)

Previous studies: ²²Si

- Recent studies performed at RIBLL1 (Lanzhou, China)
 - Silicon array + HPGe clover detectors (p-γ coincidences)
 - β2p emission from IAS in ²²AI
 - $E_{sum} = 5600 (70) \text{ keV} (b_{\beta 2p} = 0.7(3)\%)$
 - 5 events
 - new 680 keV peak identified in βp spectrum
 - $T_{1/2} = 27.8$ (35) ms
- low-lying states: $\delta = 209(96)$

J. Lee et al., Phys. Rev. Lett. 125, 192503 (2020)

Large mirror asymmetry (compared to the mirror ²²O β decay) in ²²Si decay to

- Lightest $T_z = -5/2$ isotope discovered so far
- First observed at GANIL in 1985 (74 ions) M. Langevin et al., Nucl. Phys. A 455 (1986) 149-157
- First spectroscopy studies also at GANIL 10 years later
 - βp (14 transitions) and $\beta 2 p$ (2) emission identified $(b_{\beta 2p} = 3.6(4)\%, b_{\beta(p+2p)} \approx 92\%)$
 - $T_{1/2} = 42.3(4)$ ms B. Blank et al., Z. Phys. A 357, 247–254 (1997)
- New study in RIBBL1 both protons and γs
 - New transition added
 - $T_{1/2} = 40.2(19)$ ms Wang et al., Int. J. of Mod. Phys. E 27, No. 2 (2018) 1850014

B. Blank et al., Z. Phys. A 357, 247–254 (1997)

Previous studies: ²³Si

- Lightest $T_z = -5/2$ isotope discovered so
- First observed at GANIL in 1985 (74 ions) M. Langevin et al., Nucl. Phys. A 455 (1986) 149-157
- First spectroscopy studies also at GANIL later
 - βp (14 transitions) and β2p (2) emission
 (b_{β2p} = 3.6(4)%, b_{β(p+2p)} ≈ 92%)
 - $T_{1/2} = 42.3(4)$ ms B. Blank et al., Z. Phys. A 357, 247–254 (1997)
- New study in RIBBL1 both protons and
 - New transition added
 - $T_{1/2} = 40.2(19)$ ms Wang et al., Int. J. of Mod. Phys. E 27, No. 2 (2018) 1850014

far	Blank et al.		Wang et al.		
	E_p [keV]	$\mathrm{br} \ [\%]$	$E_p \ [keV]$	br [%]	decay channel
)	600(60)	< 3	673(36)	2.4(1)	$eta \mathrm{p}$
	1320(40)	10(1)	1346(39)	5.1(4)	$eta \mathrm{p}$
4 0	1700(60)	< 5	1631(46	4.6(6)	$eta \mathrm{p}$
10 years	2400(40)	32(2)	2309(41)	21(2)	$eta \mathrm{p}$
	2830(60)	14(1)	2730(43)	9.6(1)	$eta \mathrm{p}$
	3040(60)	7.8(6)	3015(45)	8.9(5)	$eta \mathrm{p}$
nidentified	3650(60)	7.2(6)	3524(65)	8.0(5)	$eta \mathrm{p}$
			3811(51)	6.2(1)	$eta \mathrm{p}$
	4370(60)	2.0(2)	4134(52)	5.0(1)	$eta { m p}$
	4760(60)	2.7(2)	4799(56)	2(1)	$eta \mathrm{p}$
	5860(100)	1.9(2)	5857(66)	0.9(9)	$eta 2 \mathrm{p}$
	6180(100)	1.7(2)	6000(64)	0.6(6)	$eta 2 \mathrm{p}$
γ5	8680(70)	0.4(1)			$eta { m p}$
	9670(70)	0.11(4)			$eta \mathrm{p}$
	10410(70)	0.07(3)			$eta_{ m p}$
	10930(80)	0.09(3)			$eta \mathrm{p}$
	11620(100	0.03(2)	•		$eta \mathrm{p}$

Previous studies: ²³Si

Experimental details: TAMU experiment

- 22,23 Si ions produced in fragmentation reaction of 28 Si beam (45 AMeV) on 150 μ m Ni
- Separation of reaction products by means of MARS separator
- During tuning phase:
 - 300 μm thick Si detector (segmented along y-axis) at the focal plane
 - Ion-by-ion ΔE-y identification (MARS vertically dispersive)
 - Slits used to cut off most of the contaminants

Experimental details: TAMU experiment

- During data-taking diagnostic Si detector removed
- Ions implanted into active volume of the OTPC detector (69% He + 29% Ar + 2% CF₄)
- Gate on ∆E signal from another
 Si detector → trigger (beam off)
- Identification:
 - ΔE from Si detector
 - lons range in OTPC gas

- 120 identified ²²Si ions, 60 implanted correctly

Results: 23Si

- Almost 7.5 k ²³Si ions implanted into the active volume of the OTPC
- Confirmation of previously known channels:
 - $b_{\beta p} = 81.8(11)\%$ (in agreement with 92% by Blank et al.)
 - $b_{\beta 2p} = 7.7(4)\%$
- $T_{1/2} = 46(1) \text{ ms}$

missing 10% might be due to decay to the ground state in ²³Al

Results: βp emission from ²³Si

Literature					
Proton	energy	Branching			
Blank et al.	Wang et al.	Blank et al.	Wang et al.		
(keV)	(keV)				
—	_				
600(60)	673(36)	<3~%	2.4(1) %		
1320(40)	1346(39)	10(1) %	5.1(4) %		
1700(60)	1631(46)	<5%	4.6(6) %		
2400(40)	2309(41)	32(2)~%	21(2)~%		

²³Si β decay - DFT-NCCI calculations

- β decay of ²³Si investigated using shell-model approach, sufficiently accurate description of the low-lying spectrum of ²³Al
 B. Blank et al., Zeitschrift für Physik A Hadrons and Nuclei 357, 247 (1997)
- DFT-rooted No-Core Configuration Interaction model: W. Satuła, P. Bączyk, J. Dobaczewski, and M. Konieczka, Phys. Rev. C 94, 024306 (2016)
 - Extension of conventional density functional theory
 - Treating properly isospin and rotational symmetries
 - Global model applicable to a broad range of nuclei (cannot compete with fine-tuned SM)
 - AIM: validating of the new approach in a nucleus where benchmark SM results exist (no local adjustment of underlying functional's parameters)
- Configuration space:
 - g.s. and two lowest particle-hole configurations in ²³Si
 - g.s. and 13 excited configurations in the daughter nucleus ²³Al

²³Si β decay - DFT-NCCI calculations

- (Above 3.5 spectrum incomplete due to limitations in the size of the adopted configuration space)
- At low energies well compatible with SM results
- Decay to IAS dominates ($|M_F| \approx \sqrt{4.9}$ and $|M_{GT}| \approx 1.5$)
- GT decay to the lowest-lying states: |M_{GT}| well below unity
- Due to shape difference predicted for ²³Si (weakly deformed oblate) and ²³Al (well deformed prolate) Calculated mean quadrupole deformation parameters:
 - $\beta_2=0.090$, $\gamma=60^{\circ}$ for the g.s. configuration in ²³Si
 - $\beta_2=0.345$, $\gamma=0^\circ$ for the g.s. configuration in ²³Al.

Relatively well converged solutions for ground states, excited states in ²³Al below 3.5 MeV and IAS in ²³Al

Results: β2p emission from ²³Si

- 553 identified events \bullet
- Total branching ratio: \bullet $b_{\beta 2p} = 7.73(35)\%$
- Both protons stopped lacksquarein the OTPC: 22 events
- "peak" around 2.7 MeV?
- Opening angle distribution: \bullet sequential emission

Blank et al.		Wang et	al.	
$E_p ~[keV]$	$\mathrm{br}\;[\%]$	$\rm E_p \ [keV]$	br [%]	decay channel
5860(100)	1.9(2)	5857(66)	0.9(9)	$eta 2 { m p}$
6180(100)	1.7(2)	6000(64)	0.6(6)	$eta \mathbf{2p}$

Results: ²³Si - new decay channels

- Energy window for decay via IAS: $E_{IAS} - S_{3p} = 3.7(6) \text{ MeV}$
- β3p emission identified
- 2 events, $b_{\beta 3p} = 0.029_{-19}^{+38}$ %
 - E₁ = 3.6(4) MeV
 - E₂ > 2.7(7) MeV

Results: ²³Si - new decay channels

- Energy window for decay via IAS: $E_{IAS} - S_{\alpha p} = 3.2(6) \text{ MeV}$
- βpa: tentative identification (one event)
 - Energetically possible
 - Light ratio CCD/PMT + shape
 - $b_{\beta p \alpha} = 0.014_{-12}^{+33} \%$
 - $E_p = 1.6(1)$ MeV, $E_a = 1.2(4)$ MeV
 - β2p scenario: 1.6(1) and 0.4(2) MeV

Two experiments performed with OTPC:

- Ge and Zn isotopes (NSCL, MSU) ullet
 - New isotope ⁵⁹Ge identified
 - β decay of ⁶⁰Ge studied for the first time (b_{βp} \approx 100%)
 - βp from ⁵⁸Zn observed for the first time, non-negligible B(GT) despite small b
 - Cross-sections for production of neutron-deficient Ge isotopes²⁰⁰ lacksquare
- ^{22,23}Si (TAMU):
 - Known channels βp and β2p in ^{22,23}Si confirmed
 - New decay modes in ²³Si: β3p and βpa

Many thanks to...

C. Mazzocchi ¹, D. Bazin ², T. Baumann ², A. Bezbakh ³, B.P. Crider ², M. Ćwiok ¹,
W. Dominik ¹, A. Fijałkowska ^{1,4}, T. Ginter ², S. Go ⁵, R. Grzywacz ^{5,6}, J. Hooker ^{7,8},
C. Hunt ^{7,8}, Z. Janas ¹, Ł. Janiak ⁹, H. Jayatissa ^{7,8}, G. Kamiński ^{3,10}, K. Kolos ⁵,
A. Korgul ¹, E. Koshchiy ⁷, M. Kuich ¹, E. Kwan ², S.N. Liddick ^{2,11}, K. Miernik ¹,
S.V. Paulauskas ^{2,3}, J. Pereira ², M. Pfützner ¹, M. Pomorski ¹, B. Roeder ⁷,
G.V. Rogachev ^{7,8}, K.P. Rykaczewski ⁶, A. Saastamoinen ⁷, W. Satuła ¹, S. Sharma ¹,
J. Singh ¹, N. Sokołowska ¹, C. Sumithrarachchi ², Y. Xiao ⁵

¹ Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland

² National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

³ Joint Institute for Nuclear Research, 141980 Dubna, Russia

⁴ Rutgers University, New Brunswick, New Jersey

⁵ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

⁶ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

⁷ Cyclotron Institute, Texas A\&M University, College Station, Texas

⁸ Department of Physics \& Astronomy, Texas A\&M University, 77843 Texas, USA

9 National Centre for Nuclear Research, Otwock, Świerk, Poland

¹⁰ Institute of Nuclear Physics PAN, 31-342 Cracow, Poland

¹¹ Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

...and thank you for your attention!