

"Stretched" states decays studied at CCB IFJ PAN by gamma-particle coincidences

Participants and collaboration

N. Cieplicka-Oryńczak, B. Fornal, M. Ciemała, M. Kmiecik, A. Maj, J. Łukasik, P. Pawłowski, B. Sowicki, B. Wasilewska, M. Ziębliński, P. Bednarczyk, I. Ciepał, K. Dhanmeher, J. Grębosz, Ł. W. Iskra, M. Krzysiek, M. Matejska-Minda, K. Mazurek, W. Parol, B. Włoch, <u>Y. Jaganathen</u> Institute of Nuclear Physics PAN, Kraków, Poland

> <u>S. Leoni</u>, C. Boiano, S. Brambilla, S. Ziliani, S. Bottoni, A. Bracco, F. Camera, F. C. L. Crespi, E. Gamba, B. Million University of Milan and INFN Sezione di Milano, Milan, Italy

> > M. Płoszajczak GANIL, Caen, France

M. N. Harakeh University of Groningen, Groningen, Netherlands

N. Marginean, C. Clisu, N. Florea, R. Marginean, L. Stan, I. Burducea, D. A. Iancu *IFIN-HH, Magurele, Romania*

M. Sferrazza Universite libre de Bruxelles, Brussels, Belgium

P. Kulessa Institut für Kernphysik, Jülich, Germany

I. Matea Universite Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

26 October 2023 - University of Warsaw, Poland

Outline

INTRODUCTION

WHAT IS A STRETCHED STATE AND WHY IT IS INTERESTING?

STRETCHED STATE IN ¹³C: THE FIRST CASE STUDIED AT CYCLOTRON CENTRE BRONOWICE

EXPERIMENT AND RESULTS OF ANALYSIS:

- Scattered protons gamma ray coincidences
- Scattered protons light charged particles coincidences

GAMOW SHELL MODEL CALCULATIONS

Y. Jaganathen (IFJ PAN, Poland), M. Płoszajczak (GANIL, France)

FURTHER STUDIES OF STRETCHED STATES AT CCB

PRELIMINARY RESULTS OF EXPERIMENT FOR ¹⁴N AND ¹⁶O

Introduction - Shell Model

Quantum states in the nuclear mean field

The primary assumption of the nuclear shell model is that the movement of nucleons can be to a good approximation treated as the movement of independent particles in a potential that represents the average interaction with the other nucleons.

The possible values of energies for state а particle moving in а potential are obtained by solving the Schrödinger equation:

$$\widehat{H}\psi = E\psi$$

for this potential, where ψ the particle's wave is function.

$$\begin{array}{c}
\frac{-3p1/2}{3p3/2} \\
\frac{-2t5/2}{2t7/2} \\
\frac{-1h9/2}{2} \\
\end{array}$$

$$\begin{array}{c}
1113/2 \\
\frac{-2t5/2}{2} \\
\frac{-2t5/2}{2} \\
\frac{-1h1/2}{2} \\
\frac{-2d3/2}{1} \\
\frac{-2d3/2}{1} \\
\frac{-2d3/2}{1} \\
\frac{-2d5/2}{1} \\
\frac{-2p1/2}{1} \\
\frac{-1p1/2}{1} \\$$

Number of nucleons

Energy

Stretched states

Such states are dominated by a single particle-hole component for which the excited particle and the residual hole couple to the maximal possible spin value:

-1i13/2

-3p1/2-

-2f5/2-

-3p3/2-

Stretched states

Such states are dominated by a single particle-hole component for which the excited particle and the residual hole couple to the maximal possible spin value:

 $J_{\text{max}} = j_{\text{p}} (\text{max}) + j_{\text{h}} (\text{max})$

Stretched states in light nuclei - continuum region

Stretched M4 resonances in light nuclei

¹³C is a perfect case to start:

- ☑ strong M4 excitation
- ☑ well isolated peak
- ☑ quite easy preparation of target

Previous studies of M4 resonances in ¹³C

CHANNEL 009

법 400

200

COUNTS

of

NUMBER 200

NORMALIZED

-200

 π^{-}

(a)

 π

(b)

(C) 200-

Ō

3.68

The aim of the present investigations is to identify the decay of the 21.5-MeV $1p_{3/2} \rightarrow 1d_{5/2}$ resonance in ¹³C

From ¹³C(π , π ') scattering:

- **9.5 MeV** is 9/2⁺: pure neutron excitation
- **16.08 MeV** is 7/2⁺: mainly proton excitation ٠
- **21.47 MeV** is $(7/2^+, 9/2^+)$ proton and neutron excitations ٠

Previous studies of stretched states in ¹³C

EXCITATION ENERGY [MeV]

Previous studies of stretched states in ¹³C

Experimental setup - Cyclotron Centre Bronowice (Kraków, Poland)

Experiment: "STUDY OF M4 STRETCHED CONFIGURATION DECAY IN ¹³C" Spokespersons: B. Fornal (IFJ PAN), S. Leoni (INFN and Univ. Milano), M. Ciemała (IFJ PAN)

Experimental setup - Cyclotron Centre Bronowice (Kraków, Poland)

Experiment: "STUDY OF M4 STRETCHED CONFIGURATION DECAY IN ¹³C" Spokespersons: B. Fornal (IFJ PAN), S. Leoni (INFN and Univ. Milano), M. Ciemała (IFJ PAN)

Experimental setup - measurements with thick and thin targets

- 1) Scattered protons measurement: KRATTA telescope array 2) γ -ray detection:
 - four LaBr₃ detectors (3"x3")
 - two clusters of the PARIS scintillator array

3) Measurement of light charged particles produced in the reaction: a thick position-sensitive Si detector

Experimental setup - measurements with thick and thin targets

THICK ¹³C TARGET **197 mg/cm²**: May-June 2019

126 hours of measurement + 17 hours for calibration + 24 hours for tests

6 KRATTA modules at ~36 $^{\circ}$

THIN ¹³C TARGET **1 mg/cm²**: December 2019, March and June 2020

98 hours of measurement + 2 hours for calibration + 9 shifts for tests

30 KRATTA modules at ~36° (angular coverage: 30° -43°)

1) Scattered protons measurement: KRATTA telescope array 2) γ -ray detection:

- four LaBr₃ detectors (3"x3")
- two clusters of the PARIS scintillator array

3) Measurement of light charged particles produced in the reaction: a thick position-sensitive Si detector

Measurement of the scattered protons: KRATTA telescope array

KRATTA - excitation energy spectra

Excitation energy spectra measured at \sim 36° corresponding to the excitations in the ¹³C target nucleus measured as:

SINGLES (only scattered proton required)

KRATTA - excitation energy spectra

Excitation energy spectra measured at \sim 36° corresponding to the excitations in the ¹³C target nucleus measured as:

PERFORMANCE OF DSSSD (FROM THICK ¹³C TARGET EXPERIMENT)

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: No. of strips: Thickness: 50mm x 50mm 32 (16 per side) 1.5 mm

PARTICLE IDENTIFICATION MATRIX

PERFORMANCE OF DSSSD (FROM THICK ¹³C TARGET EXPERIMENT)

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: No. of strips: Thickness: 50mm x 50mm 32 (16 per side) 1.5 mm

PARTICLE IDENTIFICATION MATRIX

(for one strip, representative example)

Why another experiment?

Expected energies of emitted protons are below 4 MeV so protons will stuck in the thick target

THIN TARGET NEEDED FOR LOW-ENERGY PROTONS!

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]
2.723	1.214
2.621	1.316
1.674	2.263
0.953	2.984
0.0	3.937

Thin 1 mg/cm² ¹³C target experiment

Double Sided Silicon Strip Detector (Micron Semiconductor Ltd)

Active area: 50mm x 50mm No. of strips: Thickness: 1.5 mm

32 (16 per side)

Information on the energy and rise time allowing for light particle identification

¹³C target made of 10 foils in separate frames, total thickness 1 mg/cm² (Nicoleta Florea, Nicu Marginean IFIN-HH, Bucharest, Romania)

Why another experiment?

Expected energies of emitted protons are below 4 MeV so protons will stuck in the thick target

THIN TARGET NEEDED FOR LOW-ENERGY PROTONS!

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]	
2.723	1.214	
2.621	1.316	
1.674	2.263	
0.953	2.984	
0.0	3.937	

Scattered proton - light charged particle coincidences

Excit.Energy in ¹² B [MeV]	E _{proton} [MeV]		
2.723	1.214		
2.621	1.316		
1.674	2.263		
0.953	2.984		
0.0	3.937		

Stretched states in the continuum - Gamow Shell Model calculations

The Gamow Shell Model is an <u>open-quantum system extension of the traditional Shell Model</u>, which provides:
a rigorous treatment of bound and unbound nuclear excitations, including coupling to a continuum of non-resonant particles
a fully consistent calculation of the resonance energy and width and their mutual relation

Calculations by Y. Jaganathen (IFJ PAN) and M. Płoszajczak (GANIL)

□ The interaction was made of two parts:

- a Woods-Saxon potential with a spin-orbit and a Coulomb term to model the effective ⁴He core
- an effective finite-range two-body potential with central, spin-orbit and tensor Gaussian terms
- □ Model space was **specifically adapted** to describe the M4 state: $psd+f_{7/2}$, 3 effective holes max. in the ¹²C core
- The depths of the one-body W-S potential and the 7 parameters of the two-body interaction were adjusted to the low-lying spectra of ¹²B, ^{12,13,14}C, ^{12,13,14}N, and ¹⁴O

CANDIDATES FOR THE 21.5-MeV M4 RESONANCE IN ¹³C:

State	Т	Е	Г	%M4(n)	%M4(p)
$7/2_{6}^{+}$	1.44	19.9(5)	1500(200)	32%	22%
$7/2^{+}_{7}$	1.36	20.9(5)	400(300)	32%	19%
$7/2^+_8$	0.90	22.1(8)	2500(1000)	8%	9%
$9/2_3^+$	1.49	21.8(7)	150(300)	38%	27%

Stretched states in the continuum - Gamow Shell Model calculations

Stretched states in the continuum - Gamow Shell Model calculations (by Y. Jaganathen (IFJ PAN) and M. Płoszajczak (GANIL))

 $J^{\pi} = (7/2^+, 9/2^+), T = (1/2, 3/2)$ $J^{\pi} = 7/2^+_7, T = 1.36$ $E_{exp} = 21.47 \text{ MeV}$ $E_{th} = 20.9(5)$ MeV $\Gamma_{exp} = 270(20) \text{ keV}$ $\Gamma_{th} = 400(300) \text{ keV}$ A 7 Eexp [MeV] $J^{\pi}; T$ BRexn Eth [MeV] BRth Γ_p [keV] S_f 12_{R} $1^{-}:1$ 2.621 2.810 0 0 $0(f_{7/2})$ $2^{-};1$ 1.674 0.01 7(2) 1.979 $3(4)(p_{3/2})$ 13(6) $0(f_{7/2})$ 0 0 $2^+:1$ 0.953 69(6) 0.867 $60(13)(d_{5/2})$ 0.19 221(48) 0.02 $7(4)(d_{3/2})$ 26(16) $1^+;1$ 0.0 <23 -0.030 $7(5)(d_{5/2})$ 0.01 26(20) 12c $2^+:1$ 16.106 15.7 $2(3)(d_{5/2})$ 0.47 6(10) $1(2)(d_{3/2})$ 0.22 3(6) $1^+;1$ 15.110 24(5) 14.8 $23(9)(d_{5/2})$ 0.08 86(35)

Summary

EXPERIMENT

✓ The first information on the decay branching of the 21.47-MeV stretched state in ¹³C nucleus was obtained from proton-gamma coincidence measurements.

GAMOW SHELL MODEL CALCULATIONS

- ☑ Performed for the first time for such "heavy" system.
- ✓ Successful comparison with experiment in terms of state energy, width and decay branchings proves the high quality and precision of the GSM wave-function calculations

This newly developed approach will be crucial in predicting structures in the continuum in other nuclei in this key region of nuclear chart.

Stretched resonances in ¹⁴N and ¹⁶O

EXPERIMENT: "STUDY OF M4 STRETCHED CONFIGURATIONS DECAY IN ¹⁴N" Spokepersons: S. Ziliani, N. Cieplicka-Oryńczak, et al.

⁷Li-¹⁴N-H₂ + (¹⁶O contamination) target 160 mg/cm²

Performed in 2019/2020 at CCB IFJ

30 KRATTA modules at ~36° (angular coverage: 30°-43°)
 2 PARIS clusters
 4 LaBr₃ detectors

Stretched M4 resonances in ¹⁶O

10.21

Stretched M4 resonances in ¹⁴N

S.Ziliani, PhD thesis, University of Milan (2021)

Physics Letters B 834 (2022) 137398

The decay of the 21.47-MeV stretched resonance in ¹³C: A precise probe of the open nuclear quantum system description

N. Cieplicka-Oryńczak^{a,*}, Y. Jaganathen^{a,i}, B. Fornal^a, S. Leoni^b, M. Płoszajczak^c, M. Ciemała^a, S. Ziliani^b, M. Kmiecik^a, A. Maj^a, J. Łukasik^a, P. Pawłowski^a, B. Sowicki^a, B. Wasilewska^a, M. Ziębliński^a, P. Bednarczyk^a, C. Boiano^b, S. Bottoni^b, A. Bracco^b, S. Brambilla^b, I. Burducea^e, F. Camera^b, I. Ciepał^a, C. Clisu^e, F.C.L. Crespi^b, K. Dhanmeher^a, N. Florea^e, E. Gamba^b, J. Grębosz^a, M.N. Harakeh^d, D.A. Iancu^e, Ł.W. Iskra^a, M. Krzysiek^a, P. Kulessa^f, N. Marginean^e, R. Marginean^e, I. Matea^g, M. Matejska-Minda^a, K. Mazurek^a, B. Million^b, W. Parol^a, M. Sferrazza^h, L. Stan^e, B. Włoch^a

Thank you for your attention!