

Badanie rozpadów beta neutrononadmiarowych jąder bromu za pomocą Modularnego Spektrometru Pełnej Absorpcji

Michał Stepaniuk

Seminarium "Fizyka Jądra Atomowego" 8 grudnia 2022

Badane izotopy bromu (i kryptonu)

Badane izotopy bromu (i kryptonu)

Wszystkie badane izotopy rozpadają się β-

Dodatkowo wszystkie badane izotopy bromu są emiterami neutronów opóźnionych!

3

Rozpad β **minus i neutrony opóźnione**

$$Q_{\beta} = M(Z+1, A) - M(Z, A)$$

Michał Stepaniuk

Ciepło powyłączeniowe reaktora

Ciepło powyłączeniowe - ciepło wytwarzane przez reaktor jądrowy po jego wyłączeniu (przejściu w stan niekrytyczny).

- 1. Energia kinetyczna produktów rozszczepienia i natychmiastowych neutronów krótkotrwałe ciepło.
- 2. Natychmiastowe kwanty gamma krótkotrwałe ciepło.
- 3. Rozpady produktów rozszczepienia długotrwałe ciepło.
- Katastrofa elektrowni jądrowej Fukushima nr 1:
- wyłączono reaktory jądrowe,
- awaria chłodzenia,

5

- ciepło powyłączeniowe!
- Przechowywanie wypalonego paliwa jądrowego.
- Kontrola wypalenia paliwa podczas pracy reaktora.

Time offer	Decay near as a	Decay near for
rime arter	fraction of	typical 3000MW
shutdown	nominal power	reactor
0	0.065	195
1 sec	0.055	165
10 sec	0.05	150
1 min	0.035	105
10 min	0.02	60
30 min	0.015	45
1 hour	0.012	36
12 hours	0.006	18
1 day	0.005	15
10 days	0.0025	7.5
30 days	0.002	6
60 days	0.0015	4.5
1 vear	0.0009	2.7

Deservice at feat

https://www.nuclear-power.com/

Ciepło powyłączeniowe reaktora

Ciepło powyłączeniowe - ciepło wytwarzane przez reaktor jądrowy po jego wyłączeniu (przejściu w stan niekrytyczny).

A. Fijałkowska, rozprawa doktorska, 2016

6

Ciepło powyłączeniowe reaktora

Wybrane izotopy bromu uznane za priorytetowe

lata 70-80 - obliczenia ciepła powyłączeniowego na podstawie danych eksperymentalnych nie zgadzają się z rzeczywistością.

2005 - Powstaje grupa WPEC, która ma wspomóc naukowców w tym problemie.

2007 - raport z rekomendacjami nuklidów, które należy ponownie, dokładniej zbadać.

Radionuclide	Priority	Q _β -value (keV)	Half-life	Comments
35-Br-86	1	7626(11)	55.1 s	
35-Br-87	1	6852(18)	55.65 s	Extremely complex decay scheme with substantial gamma component; large uncertainties in the mean gamma energy arises from significant disagreements between the various discrete gamma-ray measurements. Also (β^-, n) branch.
35-Br-88	1	8960(40)	16.36 s	(β^{-},n) branch.
36-Kr-89	1	4990(50)	3.15 min	Incomplete decay scheme.
36-Kr-90	1	4392(17)	32.32 s	Incomplete decay scheme.
37-Rb-90m	2	6690(15)	258 s	Repeat of INL TAGS measurement; data check.
37-Rb-92	2	8096(6)	4.49 s	Small (β^- , <i>n</i>) branch.
38-Sr-89	2	1493(3)	50.53 d	
38-Sr-97	2	7470(16)	0.429 s	Extremely short half-life (0.429 s), and possible (β^- , <i>n</i>) branch.

ASSESSMENT OF FISSION PRODUCT DECAY DATA FOR DECAY HEAT CALCULATIONS: A report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee **NUCLEAR ENERGY AGENCY**, OECD 2007

Rozszczepienie ²³⁵U

^{89,90,91}Br nie uwzględnione w rekomendacjach, ale ich prawdopodobieństwo powstania po rozszczepieniu niemal tak samo wysokie!

89Y STABLE	90Y 64.053 h	91Y 58.51 d	92Y 3.54 h	93Y 10.18 h	94Y 18.7 min	95Y 10.3 min	96Y 5.34 s
100%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%
1.87E-9	4.48E-8	1.64E-6	7.14E-4	5.43E-4	3.89E-3	1.10E-2	2.01E-2
88Sr STABLE	89Sr 50.563 d	90Sr 28.90 y	91Sr 9.65 h	92Sr 2.66 h	93Sr 7.43 min	94Sr 75.3 s	95Sr 23.90 s
82.36%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%
7.67E-7	1.75E-4	7.37E-4	2.50E-3	1.07E-2	2.56E-2	4.51E-2	4.53E-2
87Rb 4.97E10 y	88Rb 17.773 min	89Rb 15.32 min	90Rb 158 s	91Rb 58.2 s	92Rb 4.492 s	93Rb 5.84 s	94Rb 2.702 s
3- = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	$\beta^{-} = 100.00\%$ $\beta^{-} = 0.01\%$	$\beta^- = 100.00\%$ $\beta^- n = 1.39\%$	$\beta^{-} = 100.00\%$ $\beta^{-}n = 10.50\%$
2.50E-5	2.23E-4	2.04E-3	7.06E-3	2.22E-2	3.13E-2	3.06E-2	1.56E-2
86Kr STABLE	87Kr 76.3 min	88Kr 2.825 h	89Kr 3.15 min	90Kr 32.32 s	91Kr 8.57 s	92Kr 1.840 s	93Kr 1.286 s
17.275%	β ⁻ = 100.00%	<u>ρ-</u> υ.υ0%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	P00%	β-= 100.00%
8.72E-4	JJSE-3	1.73E-2	3.43E-2	4.39E-2	3.15E-2	1.65E-2	4. 4.
85Br 2.90 mir	86Br 55.1 s	87Br 55.65 s	88Br 16.34 s	89Br 4.357 s	90Br 1.92 s	91Br 0.543 s	92Br 0.314 s
3- = 100.00	β ⁻ = 100.00%	$\beta^{-} = 100.00\%$	$\beta^{-} = 100.00\%$	$\beta^{-} = 100.00\%$	β- = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00°
2.35E-3	2 29E-3	p n = 2.80% 1.27E-2	p n = 0.58% 1.38E-2	1.03E-2	5.52E-3	2.23E-3	2.5° c-4
84Se 3.26 min	85Se 32.9 s	865e 14.5 5	875e	885e 1 53 s	89Se	905 195 ms	91Se 0.27 s
8- = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	$\beta^- = 100.00\%$ $\beta^- = 0.36\%$	$\beta^- = 100.00\%$ $\beta^- = 0.99\%$	$\beta^{-} = 100.00\%$ $\beta^{-} = 7.80\%$	β ⁻ = 100.00%	$\beta^- = 100.00\%$ $\beta^- = 21.00\%$
6 30E-3	4.46E-3	8 35E-3	7 315-3	2 67E-3	4 85E-4	1 26E-4	6 65E-6

Michał Stepaniuk

Wydział Fizyki UW

Brakujące zasilania beta, czyli dlaczego obliczenia nie wychodzą

Wiele schematów rozpadów powstało w oparciu o pomiary detektorami o wysokiej rozdzielczości, ale niskiej wydajności.

Spektroskopia Pełnej Absorpcji

Teoretycznie: układ detektorów o wydajności 100%.

Praktycznie:

 Czynny obszar detekcji pokrywający niemal pełny kąt bryłowy.

- Wydajności rzędu 80-90% na detekcję kwantów γ.
- Możliwość wykrycia promieniowania γ, X, elektronów, pozytonów, cząstek naładowanych, a nawet neutronów.
 Wydajność kosztem rozdzielczości.

SuN (Summing Nal(Tl) [..]) A. Simon *et al*. (2013) GSI TAS M. Karny *et al*. (1997)

⁶⁰Co widoczny w TASie

Modularny Spektrometr Pełnej Absorpcji

MTAS – Modular Total Absorption Spectrometer

- 19 heksagonalnych kryształów Nal(Tl).
- Największy TAS, całkowita masa ok. 1 tony.
- Podział na moduły i kręgi.
- Wewnątrz krzemowe detektory β.

M. Karny et al. (2016)

MTAS

Michał Stepaniuk

14 Wydział Fizyki UW

15 Wydział Fizyki UW

Opracowane dane MTAS

	97Nb	98Nb	99Nb	100Nb	101Nb	102Nb	103Nb	104Nb
	72.1 min	2.86 s	15.0 s	1.5 s	7.1 s	4.3 s	1.5 s	4.9 s
^{41 —} %	β ⁻ = 100.00%	β [–] = 100.00% β [–] n = 0.06%						

										140Ce STABLE	141Ce 32.511 d	142Ce > 5E+16 y	143Ce 33.039 h	144Ce 284.91 d	145Ce 3.01 min
	89Y STABLE	90Y 64.053 h	91Y 58.51 d	92Y 3.54 h	93Y 10,18 h	94Y 18.7 min	95Y 10.3 min	96Y	58 -	88.450%	β ⁻ = 100.00%	11.114% 2β⁻	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%
39 —	100%	B- = 100 00%	B ⁻ = 100 00%	B ⁻ = 100 00%	B ⁻ = 100.00%	B ⁻ = 100.00%	B ⁻ = 100.00%	B- = 100 00%							
		p - 100.0070	p = 100.00 %	p = 100.0070	p = 100.0070	p = 100.00%	p - 100.0070	p = 100.0070		4201 -	4401-		4421 -	44214	444.5
	000	005-	005-	045-	025-	075-	045-	0551		STABLE	140La 1.67855 d	141La 3.92 h	142La 91.1 min	143La 14.2 min	144La 40.8 s
	STABLE	50.563 d	28.90 y	915r 9.65 h	925r 2.66 h	7.43 min	945r 75.3 s	23.90 s	57 -	99.9119%	β ⁻ = 100.00%	β ⁻ = 100.00%			
38 —	82.58%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%							
										138Ba	139Ba	140Ba	141Ba	142Ba	143Ba
	87Rb	88Rb	89Rb	90Rb	91Rb	92Rb	93Rb	94Rb		STABLE	83.06 min	12.7527 d	18.27 min	10.6 min	14.5 s
#	4.97E10 y 27.83%	17.773 min	15.32 min	158 s	58.2 s	4.492 s	5.84 s	2.702 s	56 - #	71.09670	β ⁻ = 100.00%	β ⁻ = 100.00%			
n (Z	β = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β [–] = 100.00%	β [–] = 100.00% β [–] n = 0.01%	β ⁻ = 100.00% β ⁻ n = 1.39%	β ⁻ = 100.00% β ⁻ n = 10.50%	(Z)						
oto									ton	137Cs	138Cs	139Cs	140Cs	141Cs	142Cs
Pr	86Kr STABLE	87Kr 76.3 min	88Kr 2.825 h	89Kr 3.15 min	90Kr 32.32 s	91Kr 8.57 s	92Kr 1.840 s	93Kr 1.286 s	Pro	30.08 y	33.41 min	9.27 min	63.7 s	24.84 s	1.684 s
36 —	17.279%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	- 66	β ⁻ = 100.00%	$\beta^{-} = 100.00\%$ $\beta^{-}n = 0.04\%$	$\beta^{-} = 100.00\%$ $\beta^{-} = 0.09\%$			
							β ⁻ n = 0.03%	β ⁻ n = 1.95%							
	85Br	86Br	87Br	88Br	89Br	90Br	91Br	92Br		136Xe	137Xe	138Xe	139Xe	140Xe	141Xe
	2.90 min	55.1 s	55.65 s	16.34 s	4.357 s	1.92 s	0.543 s	0.314 s	54 -	8.8573%	5.616 1111	14.14 mm	55.00 5	15.00 5	1.75 5
35 —	β ⁻ = 100.00%	β [–] = 100.00%	β ⁻ = 100.00% β ⁻ n = 2.60%	β ⁻ = 100.00% β ⁻ n = 6.58%	β ⁻ = 100.00% β ⁻ n = 13.80%	β ⁻ = 100.00% β ⁻ n = 25.20%	β ⁻ = 100.00% β ⁻ n = 19.50%	β ⁻ = 100.00% β ⁻ n = 33.10%		2β-	β ⁻ = 100.00%	$\beta^{-} = 100.00\%$ $\beta^{-}n = 0.04\%$			
	84Se 3.26 min	85Se 32.9 s	86Se 14.3 s	87Se 5.50 s	88Se 1.53 s	89Se 0.43 s	90Se 195 ms	91Se 0.27 s		135I 6.58 h	136I 83.4 s	137I 24.5 s	138I 6.23 s	139I 2.280 s	140I 0.86 s
34 —	β ⁻ = 100.00%	B ⁻ = 100.00%	β ⁻ = 100.00%	B ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%	B ⁻ = 100.00%	53 -	$B^- = 100.00\%$	β ⁻ = 100.00%	β ⁻ = 100.00%	$\beta^{-} = 100.00\%$	β ⁻ = 100.00%	B ⁻ = 100.00%
	-			$B^-n = 0.36\%$	B-n = 0.99%	β ⁻ n = 7.80%	β⁻n	β ⁻ n = 21.00%			P	B [−] n = 7.14%	β [−] n = 5.56%	$\beta^{-}n = 10.00\%$	B-n = 9.30%
				p 11 0.5070		A CONTRACTOR OF A CONTRACT							and the second second		P
	50	51	52	53	54	55	56	57	2						P

Michał Stepaniuk

Wydział Fizyki UW

Układ eksperymentalny 87-91Br

- wiązka protonów
- tarcza ²³⁸UCx
- plazmowe źródło jonów
- separator masowy OLTF
- wiązka implantowana na taśmę

Cykle pomiarowe:

- implantacja,
- transport,
- pomiar.

Bromy - widma eksperymentalne

Michał Stepaniuk

Wydział Fizyki UW

Bromy - widma eksperymentalne

Tylko jak to badać jak nie ma tu żadnych "czystych" pików?!

Michał Stepaniuk

Wydział Fizyki UW

Baza danych ENSDF, symulacje Geant4

Evaluated Nuclear Structure Data File (ENSDF) – format plików, zawierający eksperymentalne dane jądrowe. Baza danych koordynowana jest przez The National Nuclear Data Center (NNDC), Brookhaven National Laboratory.

Geant4 – pakiet narzędzi do symulacji drogi i oddziaływań cząstek z materią.

Symulacje typu Monte Carlo.

Wersja używana do analizy danych: Geant4.10.3.p01

https://geant4.web.cern.ch

87KR L	_ Θ	5/2+			
87KR E	3	12.0 19	7.39	7	
87KRS E	3 EAV=3127	9			
87KR L	531.99	41/2+			
87KR E	3	1.2 5	8.23	19	
87KRS E	3 EAV=2870	98			
87KR (5 532.03	75.4 4			C
87KR L	. 1419.67	3(7/2+)			
87KR E	3	4.8 16	7.33	15	
87KRS E	3 EAV=2441	9			
87KR (5 1419.71	722.0 15			С
87KR L	. 1476.11	53/2+,5/2+			
87KR E	3	1.7 7	7.76	18	
87KRS E	3 EAV=2414	9			
87KR (5 944.12	71.4 1			С
87KR (5 1476.06	77.9 6			C

https://www.nndc.bnl.gov/ensdf/

Michał Stepaniuk

Wydział Fizyki UW

Symulacje ENSDF

Spodziewany efekt, przeszacowane zasilania niskich energii, niedoszacowane zasilania wysokich energii.

Symulacje ENSDF

0.543 s 4

Q⁻=9867 4

⁹¹₃₅Br₅₆

⁹¹₃₆Kr₅₅

Analiza danych TASowych

23 Wydział Fizyki UW

Analiza na przykładzie ⁸⁷Br

Michał Stepaniuk

Wydział Fizyki UW

Analiza na przykładzie ⁸⁷Br

Dopasowanie do jednego modułu/zestawu modułów może dawać poprawne zasilania dla wszystkich, ale w skomplikowanych przypadkach nie jest to wystarczające!

Co widzimy w różnych modułach MTASa

Total MTAS – pełne widmo całkowitej absorpcji

Central – "mały TAS", widmo β , pochłania niemal wszystkie nieskoenergetyczne γ

Inner, Middle, Outer – różne odległości od środka, mogą wykrywać pojedyncze przejścia γ

Jak wykorzystać moduły MTASa

Dwa podstawowe podejścia:

1) TAS składający się z wybranych kryształów:

```
E_1 + E_2 + E_3 + E_4 + E_5 + E_6
\oint
```

1 zliczenie o zsumowanej energii w końcowym widmie

2) Pojedyncze przejścia (na miarę możliwości MTASa):

6 zliczeń w końcowym widmie, potencjalnie pojedyncze przejścia

27

Analiza 2D: Total MTAS vs. pojedyncze kryształy I+M+O

Michał Stepaniuk

Wydział Fizyki UW

Analiza 2D: Total MTAS vs. pojedyncze kryształy I+M+O

Potrzebna poważna ingerencja w funkcje odpowiedzi (R_{ij}), zmiana intensywności przejść β nie jest wystarczająca.

$$d_i = \sum_{j=0}^{j_{\max}} R_{ij} f_j, i = 1, i_{\max}$$

1 przejście γ z każdego poziomu
 ~10 przejść γ z każdego poziomu

Michał Stepaniuk

Dopasowanie wszystkiego wszędzie naraz – metoda z P. Shuai *et al*. (2022)

Wyjście od ogólnego wzoru na dekonwolucję widma.

$$d_i = \sum_{a=1}^M R_{ia} s_a, \quad a = 1, \dots, M,$$

Iteracyjne dopasowywanie funkcji odpowiedzi R_{ia} do widma. Inny algorytm, ale ta sama użyteczność co metoda ME.

R_{ija} – funkcja odpowiedzi po wszystkich kanałach, przejściach i dopasowywanych widmach (modułach MTAS).

Wszystko wszędzie naraz.

$$s_a^{(r+1)} = \frac{1}{\sum_{k=1}^N R_{ka}} \sum_{i=1}^N \frac{R_{ia} s_a^{(r)} d_i}{\sum_{b=1}^M R_{ib} s_b^{(r)}}, \quad a = 1, \dots, M.$$

$$s_a^{(r+1)} = \frac{1}{\sum_{k=1}^N \sum_{l=1}^N R'_{kla}} \sum_{i=1}^N \sum_{j=1}^N \frac{R'_{ija} s_a^{(r)} d'_{ij}}{\sum_{b=1}^M R'_{ijb} s_b^{(r)}},$$

$$a = 1, \dots, M.$$

$$s_{a}^{(r+1)} = \frac{\sum_{i=1}^{N} \frac{R_{ia} s_{a}^{(r)} d_{i}}{\sum_{b=1}^{M} R_{ib} s_{b}^{(r)}} + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{R'_{ija} s_{a}^{(r)} d'_{ij}}{\sum_{b=1}^{M} R'_{ijb} s_{b}^{(r)}} + \cdots},$$

$$a = 1, \dots, M.$$

P. Shuai et al. (2022)

Michał Stepaniuk

30 Wydział Fizyki UW

Wyniki⁸⁷Br

Michał Stepaniuk

Wydział Fizyki UW

⁸⁷Br – porównanie z innym TASem

Michał Stepaniuk

Wydział Fizyki UW

⁸⁷Br – porównanie z innym TASem

Odejście od schematu rozpadu: pseudo-poziomy co 40 keV powyżej 1.6 MeV.

Mniejsza rozdzielczość – bardziej "wygładzone" widmo.

Takie same średnie energie!

⁸⁷ Br	ENSDF	E. Valencia <i>et</i> <i>al</i> . (2017)	Analiza
$\overline{E_{\mathcal{Y}}}$ (keV)	3087	3938^{+40}_{-67}	3938(40)
$\overline{E_{eta}}$ (keV)	1603	1159^{+32}_{-19}	1209(20)
\overline{E}_{γ}	28%		_ β 28%

Michał Stepaniuk

⁸⁷Br – intensywności przejść β i BGT

Fig. 4. Reduced transition probabilities (B'(GT)) for β^- decay of ⁸⁷Br to levels in ⁸⁷Kr obtained from γ -ray and neutron measurements (upper) and the B'(GT) to single-particle resonances from shell-model calculation (lower) (see subsect. 6.3).

F.M. Nuh et al. (1977)

34

Wydział Fizyki UW

Neutrony w MTAS

Rozpraszanie:

Rozpraszanie energii neutronu -> jonizacja -> depozyt energii w detektorze.

 $E_{max} \simeq E_{kin}$

• **Pochłonięcie neutronu:** głównie kryształ ²³Na¹²⁷I Kwanty gamma -> rozpraszanie Comptona, efekt fotoelektryczny, kreacja par -> jonizacja -> depozyt energii w detektorze.

¹²⁷I: Przekrój czynny = 6,15 barna, ¹²⁸I: S_n = 6826.13 keV ²³Na: Przekrój czynny = 0,53 barna, ²⁴Na: S_n = 6959.42 keV $E_{max} = E_{kin} + S_n$

 E_{max} – maksymalny depozyt energii w detektorze

- E_{kin} energia kinetyczna neutronu
- S_n energia separacji neutronu

Funkcja odpowiedzi na neutrony MTAS

	⁸⁷ Br	ENSDF	Analiza
$1201: S_n = 6826.13 \text{ KeV}$	P _n (%)	2.60(4)	2.3(2)

Wyniki⁸⁹Br

⁸⁹Br – intensywności przejść β i BGT

⁸⁹Br neutrony: Total MTAS vs Central

Michał Stepaniuk

Wydział Fizyki UW

Wyniki ⁹¹Kr

40 Wydział Fizyki UW

⁹¹Kr – intensywności przejść β i BGT

Wyniki ⁹¹Br

Michał Stepaniuk

Wydział Fizyki UW

⁹¹Br – intensywności przejść β i BGT

Energia / 40 (keV)

Zmiana BGT wraz z masą

Coraz węższa struktura poziomów poniżej S_n wraz ze wzrastającą masą.

Ciepło powyłączeniowe – wpływ elektronów

Ciepło powyłączeniowe – wpływ komponentu elektromagnetycznego

Anomalia antyneutrin reaktorowych

$$\beta^-: \quad {}^A_Z X \to {}^A_{Z+1} Y + e^- + \overline{\nu}_e$$

Zmierzone widmo antyneutrin elektronowych z reaktora zawiera ich ~6% mniej w porównaniu do przewidywań teoretycznych.

Antyneutrina elektronowe wykrywa się dzięki odwrotnemu rozpadowi beta. Próg na reakcję to 1.8 MeV.

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

$$1.8 \text{ MeV}$$

$$\cong E_{e^{+}} + E_{n} + (M_{n} - M_{p}) + m_{e^{+}}$$

Daya Bay Collaboration (2016)

Michał Stepaniuk

 $E_{\overline{\nu}}$

Wpływ na antyneutrina z rozpadu ⁸⁷Br

czarna przerywana – przekrój czynny na odwrotny rozpad β

czerwona – analiza, rozkład energii antyneutrin elektronowych

niebieski – baza danych NNDC, rozkład energii antyneutrin elektronowych

linie przerywane – rozkład energii * przekrój czynny

Całkowity przekrój czynny na oddziaływanie z materią (10⁻⁴³ cm² rozszczepienie⁻¹)

Baza danych NNDC	1.79
MTAS	0.94

Wpływ na antyneutrina z rozpadów ⁸⁹Br i ⁹¹Kr

Michał Stepaniuk

Wydział Fizyki UW

Dziękuję za uwagę

