

Activities in Experimental Room at Danish Centre of Particle Therapy

Mateusz Sitarz FUW webinar, 08.04.2021

Outline

- Danish Centre for Particle Therapy
 - Experimental Room
- Ongoing projects
 - gel dosimetry
 - space irradiations
 - RBE in vivo studies
 - FLASH irradiations
 - Mixed-LET (preparation)

PRELIMINARY RESULTS, CONFIDENTIAL

courtesy of Morten Høyer

Danish Centre of Particle Therapy at Aarhus University Hospital

- About 1200 patients a year are expected to benefit from proton therapy in Denmark
- It is approx. 10% of the patients who are treated with radiation

photon vs proton

courtesy of Morten Høyer

Danish Centre of Particle Therapy at Aarhus University Hospital

pencil scanning proton beam

energy: 70-244 MeV beam current on target: 0.5-15 nA max. field: 30x40 cm² max dose rate: 10⁶ MU/min SAD: 228 cm

Experimental Room (October 2019)

Transnational Access application

Projects in physics

Radiochromic gels

A deformable three-dimensional radiochromic dosimeter has been produced, where the dose distribution can be read-out by using high resolution optical computed tomography.

The difference in optical density measured using a spectrophotometer (Spectroquant Pharo 100) at approx. 625 nm (absorption peak for the present chemical composition). Pre-scan approx. 20 h before irradiation and post-scan approx. 6 h after.

projects.au.dk/3d-dosimetry/

Radiochromic gels

0.35

- **Material development:** Optically-stimulated luminescence (OSL).
- **Read-out techniques:** calibration and quenching correction.
- Magnetic resonance guided radiotherapy: dosimeters are meant to help investigate the effects of radiotherapy treatments in the presence of a magnetic field.
- Influence of motion and deformation: the deformable silicone-based dosimeters opens a realm for investigating how the dose deposition is affected when the irradiated material is deformed.
- **Clinical integration:** dosimeters can be cast into anthropomorphic shapes, which would make them ideal to use for patient specific quality assurance.

Space radiation

- 1. Radiation tolerance of LIDARs
- 2. Detectors for GeoSatelites

- low fluence rate (max. 10⁷ p/s/cm²)
- translation of Treatment Planning System from *dose* to *fluence* regime

$$D = \phi \frac{1}{\rho} \left(\frac{dE}{dx} \right)$$

Benedikt Bergmann, Thomas Billoud, Adam Smetana, Maroš Petro Institute of Experiment and Applied Physics, Czech Technical university in Prague

Space radiation – MIRAM project

MIRAM (*MIniaturized RAdiation Monitor*) is developed for the real-time measurement of the total ionizing dose, electron, proton and ion fluxes in space.

hybrid semiconductor pixel detector technology Timepix3

14 x 14 mm² 256 × 256 pixels 55 μm per pixel

Timepix3 detectors with 500 μ m thick silicon sensors are installed in High Energy Physics Experiments at CERN (ATLAS and MoEDAL) where they measure the composition and directionality of the radiation fields.

MIRAM detector

82 x 60 x 49 mm³ weight = 140g price < 50 kEUR power consumption: < 1 W

10

Benedikt Bergmann, Thomas Billoud, Adam Smetana, Maroš Petro Institute of Experiment and Applied Physics, Czech Technical university in Prague

Space radiation – MIRAM project

3000 2500 Electron 98 True label 2000 -1500 2 1000 Proton 8 500 Electron Directionality map of tracks in MoEDAL

Measurement in each pixel:

- energy (keV)
- time (ns)

Track registration (particle-by-particle)

270°

00:59-03:59, Nov. 24, 2018- \$\phi\$ vs. \$\Theta\$ (degree)

50 60

135

225

180*

Algorithm for species recognition.

Confusion matrix for CNN trained with simulated proton and electron data

Space radiation – MIRAM project

- 1. Calibration of the detector parameters (charge collection efficiency, ...)
- 2. Validation of particle-recognition algorithm
- **3.** Input for simulations (ground truth for ML approaches improving the particle separation and tracking capability)
- 4. Verification of the detector response
- 5. Validation of the detector survivability in radiation intensive environments
 - GOMX-5 mission
 - Space Polar Ice Explorer mission
 - NSPO Lunar Orbiter
 - ESA European Large Logistic Lander

courtesy of Christian Søndergaard

Clinics QA + research

- Spot size measurements with gafchromic films
- Absolute dosimetry with ionization chambers
- Testing of prototype matrix array for FLASH
- Influence of pacemaker wires for dose distribution

Radiobiology studies

In vivo research

CDF1 mice set-up

courtesy of Cathrine Overgaard

Acute and late effects after RT

Acute skin damage (Moist desquamation) \rightarrow analysed 7 to 30

days after RT

TABLE I

MOUSE FOOT SKIN SCORING SYSTEM FOR DEVELOPING AND DECLINING EARLY REACTIONS

0.5	Slight reddening.
	<25% hair loss.
1.0	Severe reddening.
	Swelling.
	25-75% hair loss.
1.5	Moist desquamation of one small area.
	2 toes partly stuck together.
	>75% hair loss.
2.0	Moist desquamation of 25% of skin area.
	Toes stuck together, but general shape unchanged
	All toes can be identified.
2.5	Moist desquamation of 50% of skin area.
	loes stuck together, general shape changed. At
10	least 3 toes can be identified.
3.0	Moist desquamation of 75% of skin area.
25	Foot snapeless, but I or 2 toes can be identified.
3.2	Moist desquamation of entire skin area.
	Poor snapeless, no loes can be identified.
	the second s

Radiation induced fibrosis → analysed 2 to 12 months after RT

Four legs good, two legs bad better

Score 2.5

courtesy of Cathrine Overgaard

Dose response curves

PRELIMINARY RESULTS, CONFIDENTIAL

courtesy of Steffen Nielsen

In vivo research

Other research:

- influence of leg fixation methods (hypoxia)
- influence of fractionation
- RBE changes with LET
- tumour regrowth rate with immunotheraphy

FLASH studies

FLASH effect remarkable sparing of normal tissue after irradiation at ultra-high dose rate (>40 Gy/s)

FLASH at DCPT

- Highest available energy (250 MeV) for highest transmission
- Highest available stable beam current (215 nA)

Transmission beams with treatment in entrance plateau:

- Fast 2D pencil beam scanning over small area
- No energy shifts
 - Simpler physics ("no" dose variation with depth)
 - Simpler biology ("no" RBE variation with depth)

FLASH at DCPT – set-up

scintillator crystals

radiochromic film

FLASH at DCPT – treatment planning

- Forward planning in Matlab
- Dose calculation in Eclipse (only for 244 MeV)

FLASH irradiations

250 MeV (service mode)

The beam monitor chamber in the nozzle only measures 7-10% of the dose. MU must be scaled down accordingly.

QA with Advanced Markus chamber (verified with graphite calorimeter).

=~ 100 Gy/s (mean field dose rate)

FLASH at DCPT – set-up

Irradiation of 3 mice at a time in CONV mode (/w repainting)

"All mice are equal"

Spot pattern

1	•	•	•	•	•	•	•	•	•	•	•		•	•	•	Ì
3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i
1	•	•	•	•	•	•	•	٠	•	•	٠	٠	•	•	٠	1
8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1	•	•	•	•	•	•	•	•	•	•	•	•	•	•)

Ashraf et al., Frontiers in Physics 2020

Response	Detectors	Measurement type	FLASH study	Instantaneous dose-rate/dose per pulse (D _p) dependence	Spatial resolution	Time-resolution	Energy dependence
Luminescence	TLD/OSLD	1D, 2D	e [15, 37, 71]	Independent (~10 ⁹ Gy/s) [80, 137]	~ 1 mm	Passive	Tissue-equivalent
	Scintillators	1D, 2D, 3D	p [13, 18]	Independent (~10 ⁶ Gy/s) [29]	~ 1 mm	~ns	Tissue-equivalent
	Cherenkov	1D, 2D, 3D	e [29]	Independent (~10 ⁶ Gy/s) [29]	$\sim 1 \mathrm{mm}$	~ps	Energy dependent
	FNTD	2D	NA	Independent (~10 ⁸ Gy/s) [85]	~ 1 µm	Passive	Energy dependent
Charge	lonization chambers	1D, 2D	p [13, 18, 19] e [15, 37, 71] ph [16, 17]	Dependent on D _p [48, 52] (>1 Gy/pulse),	~3-5 mm	~ms	Energy dependence shows up > 2 MeV
	Diamonds	1D	p [18]	Dependent on Dp (>1 mGy/pulse) [49]	~ 1 mm	~µ5	Tissue-equivalent
	Si diode	1 D , 2D	NA	Dependent on D _p [54] (Independent ~ ~ 0.2 Gy/s) [138]	~ 1 mm	~ms	Energy dependent
Chemical	Alanine pellets	1D	e [12, 15, 37, 139]	Independent (10 ⁸ Gy/s) [69]	~ 5 mm	Passive	Tissue-equivalent
	Methyl viologen/fricke	1D	e [29, 48]	Depends on the decay rate and diffusion of radiation induced species	~ 2 mm	~ns	Tissue-equivalent
	Radiochromic film	2D	p [18, 19] e [10-12, 15, 30, 37, 71, 140] ph [16]	Independent (10 ⁹ Gy/s) [70, 71]	~1µm	Passivo	Tissue-equivalent
	Gel dosimeters	3D	NA	Strong dependence below 0.001 Gy/s [141] and above 0.10 Gy/s [142]	~1 mm	Passive	Tissue-equivalent

The color scheme of the "Response" and "Detectors" panel matches the spider plots in Figure 14. Performance of each dosimeter for a specific parameter is color coded: green (good), yellow (moderate), and red (poor).

26

FLASH dosimetry – at DCPT Response Detectors

Incident

Initial recombination

- Used to find daily MU scaling factor for FLASH
- Daily ion recombination correction factor (2-voltage method):
 - $k_s = 1.0008 \pm 0.0004$ (for 10nA)
 - $k_s = 1.0072 \pm 0.0035$ (for 215nA)

Alanine	Films
Very sensitive to humidity.	Can be submerged in water.
Dose rate independent.	Dose rate independent.
Range up to ~kGy.	Not recommended above 10 Gy.
Very high precision.	High uncertainty.

In vivo dosimetry with crystal scintillators and fiber-optic cables:

- position of the crystal within the spot pattern
- online monitoring of beam delivery

courtesy of Brita Sørensen

collaboration with Varian

CONFIDENTIAL

PRELIMINARY RESULTS,

Hypothetical FLASH response curves

Next steps in FLASH

- Data evaluation for healthy tissue
- Dose response curve for tumor mice
- Test of new monitor chamber [Varian] no daily scaling factor, stable beam delivery
- Film dosimetry with EBT-XD model (extended dose range)
- Monte Carlo simulations of mice set-up

In vitro studies (preparation)

Mixed-LET effect Clinical motivation

Simultaneous high and low LET radiations interact to produce more DNA damage than expected from an additive action.

Sollazzo et al., 2016, 2017

- 1. Lack of relevant data for mixed-LET effect with **proton + X-ray** fields.
- 2. Possible clinical application: mixed-LET increase of tumor control.

Mixed-LET effect **Experimental verification**

Experimental plan at DCPT

Papillon 50 x-ray tube

(collaboration with Department of Oncology, Aarhus University Hospital)

x-ray field

Table 1. Dosimetric characteristics of the Papillon 50[™] unit measured with two different rectal applicators of 3- and 2.2-cm diameter.

Dosimetric characteristics	3 cm	2.2 cm
FSD (mm)	38	29
Dose rate surface (Gy/min)	20	35
HVL (mm Al)	0.57	0.55
50% depth dose (mm)	7	6.5
Dose at 5 mm (Gy) (10 Gy/surface)	6	5.5
Dose at 10 mm (Gy) (10 Gy/surface)	3.8	3.4
Maximum energy of beam: 50 keV. Mean energy of beam: 26.5 keV. Filtration 0.2 mm aluminum – mAs: 2.7 FSD: Focus surface distance: HVL: Half value lay	ver.	

25.02.2021

Quantification of synergism

Water phantom designs

25.02.2021

38

Summary

- Development of radiation physics research at DCPT (gel dosimetry, space radiation)
- Integration of research and clinics
- First results of FLASH in vivo with proton scanning beam
- Preparation for *in vitro* studies
 - Collaboration with FUW
 - Postponed due to lockdown

Danish Centre for Particle Therapy AUH

Per Poulsen, Jacob Johansen, Eleni Kanouta, Christian Søndergaard, Niels Bassler, Cai Grau

Department of Experimental Clinical Oncology AU

Brita Sørensen, Steffen Nielsen, Cathrine Overgaard

Technical University of Denmark

Claus Andersen, Christina Ankjærgaard