WISArD - Probing beyond SM with beta delayed protons

Marcin Pomorski CENBG, IN2P3, CNRS

Outline

- What and why? Physics motivation behind the experiment
- How? The setup of WISArD
- When and where? Proof of principle experiment.
- What do we do now...
- ... and what will we do soon.

WISArD?

- WISArD stands for Weak-Interaction Studies with Ar³² Decay
- The aim of the experiment is to put stringent (rivaling those of LHC experiments) limits on exotic currents in β-decay by measuring correlations between β particle and proton in β-delayed proton emissions...

Theoretical basis

- Let us consider pure Fermi and Gamov-Teller β decays.
- In framework of effective field theory those are vector scalar and axial-vector tensor transitions, respectively

$$\begin{aligned} \mathcal{L}_{\text{Lee-Yang}} &= -\bar{p}\gamma^{\mu}n\left(C_{V}\bar{e}\gamma_{\mu}\nu - C_{V}'\bar{e}\gamma_{\mu}\gamma_{5}\nu\right) + \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}\bar{e}\gamma_{\mu}\gamma_{5}\nu - C_{A}'\bar{e}\gamma_{\mu}\nu\right) \\ &- \bar{p}n\left(C_{S}\bar{e}\nu - C_{S}'\bar{e}\gamma_{5}\nu\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}\bar{e}\sigma_{\mu\nu}\nu - C_{T}'\bar{e}\sigma_{\mu\nu}\gamma_{5}\nu\right) \\ &- \bar{p}\gamma_{5}n\left(C_{P}\bar{e}\gamma_{5}\nu - C_{P}'\bar{e}\nu\right) + \text{h.c.} \end{aligned}$$

 According to SM there are no contributions to β-decays from scalar and tensor currents

Angular correlations

 The nature of the β-decays affects the angular distribution between β particle and neutrino in β-decays.

$$w(E_e, \Omega_e, \Omega_v) \propto w_0(Z, E_e) \left(1 + \frac{\vec{p_e} \cdot \vec{p_v}}{E_e E_v} a_{\beta v} + \frac{m_e}{E_e} b\right)$$

- Both α angular-correlation coefficient and b Fierz term depend on the C_n coefficients

Correlations, correlation..

• Fermi decays:

$$a_{\beta v_F} \approx 1 - \frac{|C_S|^2 + |C_S'|^2}{|C_V|^2},$$

$$b_F pprox \pm Reigg(rac{C_S+C_S'}{C_V}igg)$$

• Gamov-Teller decays:

$$a_{\beta v_{GT}} \approx -\frac{1}{3} \left[1 - \frac{|C_T|^2 + |C_T'|^2}{|C_A|^2} \right]$$

$$b_{GT} \approx \pm Re\left(rac{C_T + C_T'}{C_A}
ight)$$

 $\tilde{a}_{\beta\nu} \approx a_{\beta\nu}/(1+\alpha b),$

Let's take a step back

- One can not measure angular distribution of neutrino...
- But one can observe daughter nucleus recoil...
- Let's consider Fermi transition:

How to measure recoil and β ?

- We may use β -delayed proton emission.
- When the proton is emitted, it's energy in LAB will depend on the recoil energy in CM.
- Bonus: one can use proton energy to gate pure Fermi transitions!

Let's take another step back

María J G Borge and Klaus Blaum, J. Phys. G: Nucl. Part. Phys. 45 (2018) 010301

25th March 2021

The setup (schematic)

- Instead of large β detector, the measurement is done in strong magnetic field
- This field gives us effective 2π coverage for electrons
- Notice only one scintillator

V. ARAUJO-ESCALONA et al. PHYSICAL REVIEW C 101, 055501 (2020)

What's the catch?

- When you want to achieve 10⁻³ precision, every part of the setup is a catch
- Now that we simplified physics we need to complicate the design...

Case of Ar³²

- Well known structure
- Good production with ISOL technique
- Possible to measure both pure Fermi and pure GT transitions in single experiment.

Proof of principle experiment

- Performed soon before LS2
- Used whatever hardware was on the shelf
- Only around 35h of beam
- Results published:
 V. Araujo-Escalona et al.
 PHYSICAL REVIEW C 101, 055501 (2020)

Proof of principle results

- $\tilde{a}_{\beta\nu \ \text{Fermi}} = 1.007(32)_{\text{stat}} (25)_{\text{syst}}$
- $\tilde{a}_{\beta\nu GT} = -0.222(86)_{stat} (16)_{syst}$
- This is in agreement with expected values of 1 and -1/3
- Interestingly this is 3rd most precise measurement of ã_{βν} in pure Fermi transition so far

Final setup is a bit more complicated...

Re(C_s/C_V)

25th March 2021

My part - Silicon detectors

- Custom made
- 5 strips with almost the same area each
- Dead layer under 100nm
- Expected resolution under 10 keV FWHM

Comes in set with pre-amp

- High resolution, high density
- Made at LPC Caen

Things to check

- Temperature study find the point of diminishing returns
- Test entire set ACQ preamp detector
- Measure dead layer
- Confirm resolution

Measuring dead layer

- Deal layer results in energy shift when changing angle
- AIFIRA excellent energy stability is ideal for this.

AIFIRA accelerator

- Electrostatic accelerator here in CENBG
- Good energy stability and intensity control

AIFIRA nano chamber

rium ZFJ FUW 5th March 2021

Energy shift and dead layer estimation

Energy shift between 0° and 45° for 700 keV alphas

Is 60nm thin enough?

- On average we observed thickness of 61 ± 4nm
- This corresponds to shift of ~1 keV for protons in actual experiment
- Resolution of the detector also looks good.

Strip	σ values in keV			
Run	2	3	4	5
2	3.79 ± 0.02	3.78 ± 0.01	-	-
3.1	-	3.64 ± 0.02	$4.29 \pm 0.05^{**}$	5.21 ± 0.02
3.2	-	3.56 ± 0.02	$4.20 \pm 0.06^{**}$	$5.20\pm0.03\%$
4	-	3.59 ± 0.02	$4.40 \pm 0.07^{**}$	5.56 ± 0.04
5	3.81 ± 0.02	3.70 ± 0.02	-	-
6	-	3.95 ± 0.01	-	-
7	-	$3.46 \pm 0.04\%$	3.61 ± 0.04	4.44 ± 0.03
8*	-	3.36 ± 0.05	3.67 ± 0.05	4.25 ± 0.04
9*	-	3.50 ± 0.03	-	-
10*	3.87 ± 0.04	3.61 ± 0.05	-	-
11*	-	3.38 ± 0.04	3.54 ± 0.04	3.98 ± 0.06

Outlook

- Most of design is final, we are ordering the hardware
- 7 more Si detectors are coming
- Detectors measurements are progressing
- Magnetic field verified
- Assembly late this year?

Thank you for your attention

