β -decay study of very neutron-rich indium isotopes

Monika Piersa-Siłkowska¹, A. Korgul¹, L. M. Fraile², J. Benito²

IS610 and IDS Collaborations

¹University of Warsaw, Poland

²Universidad Complutense de Madrid, Spain

Seminarium Fizyki Jądra Atomowego 9 grudnia 2021, *online*

β -decay study of very neutron-rich indium isotopes

New β -decay branches of ¹³⁴In and first β -decay spectroscopy of ¹³⁵In

- 1. Motivation: astrophysics, nuclear structure
- 2. Previous studies: In and Sn isotopes beyond N = 82
- Experiment: β-delayed γ-ray spectroscopy ISOLDE Decay Station
- 4. Results and discussion
- 5. Summary and outlook

Monika Piersa-Siłkowska (University of Warsaw)

Monika Piersa-Siłkowska (University of Warsaw)

Monika Piersa-Siłkowska (University of Warsaw)

Monika Piersa-Siłkowska (University of Warsaw)

Sn

4 0 Pb

E₂₊ (MeV)

S_{2n} (MeV)

-10

N-N_{magic}

Monika Piersa-Siłkowska (University of Warsaw)

Previous β -decay study of ¹³⁴In (1996)

TABLE I. Data for γ transitions in ¹³³Sn.

Energy (keV)	¹³⁴ In decay Neutron gated	Relative intensity 134 In decay β gated only
354.0(10) 802.0(10) ^a 853.7(3) 1560.9(5) ^b 2004.6(10)	$\begin{array}{c} 2.3(7) \\ 2.1(10) \\ 13(2) \\ 100(5) \\ 5.1(10) \end{array}$	< 2 9(2) 23(2) 100(4) 26(3)

^bThe absolute intensity of this transition is (5-10)% per decay of ¹³⁴In

 $P_n (^{134}In) \sim 65\%$

 $T_{1/2}(^{134}In)=138(8)$ ms

P. Hoff et al., PRL 77, 1020 (1996).

Status: β -decay daughters of ^{134,135}In

Monika Piersa-Siłkowska (University of Warsaw)

Status: β -decay daughters of 134,135 In

²⁴⁸Cm sf
 A. Korgul et al., EPJA 7, 167 (2000).
 C. T. Zhang et al., Z. Phys. A 358, 9 (1997).

²³⁸U in-flight fission
 D. Kameda et al., PRC 86, 054319 (2012).

Seminarium Fizyki Jądra Atomowego 10/31

Experiment: ISOLDE Decay Station

- IS610 experiment 0
- Spokespersons: 0

L. M. Fraile (Univ. Complutense de Madrid)

A. Korgul (Univ. Warsaw)

- Fast-timing campaigns in 2016 and 2018 0
- ¹³²Sn region: neutron-rich In isotopes 0

MPS et al., PRC 104, 044328 (2021). J. Benito, ..., MPS et al., PRC 102, 014328 (2020). MPS et al., PRC 99, 024304 (2019). MPS et al., APPB 49, 523 (2018).

MPS. Phd thesis (Univ. Warsaw, 2021). J. Benito, Phd thesis (Univ. Complutense de Madrid, 2020).

Energy (keV)

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of ¹³⁴In and ¹³⁵In

Seminarium Fizyki Jadra Atomowego 11/31

\overline{Status} : β -decay scheme of ¹³⁴In

 $\frac{(4^{-}-7^{-})}{{}^{134}_{49}\text{In}_{85}}\beta n$ T_{1/2} = 138(8) ms

P. Hoff et al., PRL 77, 1020 (1996).

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of 134 In and 135 In

Seminarium Fizyki Jądra Atomowego 12/31

P. Hoff et al., PRL 77, 1020 (1996). I. Dillmann et al., EPJA 13, 281 (2002). G. Lorusso et al., PRL 114, 192501 (2015). M.P.S. et al., PRC 104, 044328 (2021).

Monika Piersa-Siłkowska (University of Warsaw)

Counts / channel

 β -decay study of ¹³⁴In and ¹³⁵In

Seminarium Fizyki Jądra Atomowego

New transitions assigned to the β *In*-decay branch

Monika Piersa-Siłkowska (University of Warsaw)

β -decay study of 134 In and 135 In

 $(4^{-} - 7^{-})$

βn

Results: βn decay of ¹³⁴In

 $(4^{-} - 7^{-})$

 $(4^{-} - 7^{-})$

Monika Piersa-Siłkowska (University of Warsaw)

Large β -decay energy of ¹³⁴In

Monika Piersa-Siłkowska (University of Warsaw)

Monika Piersa-Siłkowska (University of Warsaw)

Results: new states in ¹³⁴Sn

Counts / keV 10F

Counts / keV

Counts / keV

30

20Ē

10

100

200

Monika Piersa-Siłkowska (University of Warsaw)

والمراجع والمحاجب والمتعادين والمتعادية

300

400

500

Energy (keV)

Results: new states in ¹³⁴Sn

Counts / keV 10F

Counts / keV

Counts / keV

30

20Ē

10

100

200

ويحاولها أحجر أعجابه وبالمعجودا

300

400

Results: new states in ¹³⁴Sn

Decay branch	Daughter nucleus	Energy (keV)	Relative intensity
→ βγ	¹³⁴ Sn	6 ⁺ 173.8(3)	$4.9(3)^{a}$
βγ	¹³⁴ Sn	4 ⁺ 347.4(3)	$4.9(3)^{a}$
βγ	¹³⁴ Sn	2 ⁺ 725.6(3)	4.9(4)
$\rightarrow \beta \gamma$	¹³⁴ Sn	1665.5(3)	0.6(1)
- βγ	¹³⁴ Sn	3512.3(3)	2.7(3)
- βγ	¹³⁴ Sn	3763(1)	0.5(1)
	-	:	

^aRelative intensities were corrected for internal conversion $\alpha_{tot}(174 \text{ keV}) = 0.227(4)$ and $\alpha_{tot}(347 \text{ keV}) = 0.0221(4)$ [53].

Monika Piersa-Siłkowska (University of Warsaw)

Results: ¹³⁴In g.s. spin and parity

Decay branch	Daughter nucleus	Energy (keV)	Relative intensity
βγ	¹³⁴ Sn	6 ⁺ 173.8(3)	$4.9(3)^{a}$
βγ	¹³⁴ Sn	4 ⁺ 347.4(3)	$4.9(3)^{a}$
βγ	¹³⁴ Sn	2 ⁺ 725.6(3)	4.9(4)
 βγ 	¹³⁴ Sn	1665.5(3)	0.6(1)
► βγ	¹³⁴ Sn	3512.3(3)	2.7(3)
► βγ	¹³⁴ Sn	3763(1)	0.5(1)
1	:		:

^aRelative intensities were corrected for internal conversion $\alpha_{tot}(174 \text{ keV}) = 0.227(4)$ and $\alpha_{tot}(347 \text{ keV}) = 0.0221(4)$ [53].

C. Yuan et al., PLB 762, 237 (2016).

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of ¹³⁴In and ¹³⁵In

 S_{2n}

14.5

6.0

 $^{134}_{49}In_{85}$

Monika Piersa-Siłkowska (University of Warsaw)

Results: β -decay branching ratios

Monika Piersa-Siłkowska (University of Warsaw)

Results: the $v1i_{13/2}$ state

Monika Piersa-Siłkowska (University of Warsaw)

Results: the $v1i_{13/2}$ state

Empirical predictions of the $v1i_{13/2}$ single-particle energy

- 2694(200) keV W. Urban *et al.*, EPJA 5, 239 (1999).
 [πg_{7/2}νi_{13/2}]₁₀₊ in ¹³⁴Sb
- **2511(80)** keV A. Korgul *et al.*, PRC 91, 027303 (2015). $[\pi g_{7/2}(y_{7/2}i_{1/3/2})]_{27/2}$ and $[\pi g_{7/2}(v_{1/9/2}i_{1/3/2})]_{29/2}$ - in ¹³⁵Sb
- 2360-2600 keV W. Reviol et al., PRC 94, 034309 (2016).
 13/2⁺₁ and 13/2⁺₂ states in N=83 ¹³⁷Xe

Results: the $v1i_{13/2}$ state

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of ¹³⁴In and ¹³⁵In

Seminarium Fizyki Jadra Atomowego 19/31

Discussion: GT and ff decays of ¹³⁴In

Monika Piersa-Siłkowska (University of Warsaw)

Discussion: GT and ff decays of ¹³⁴In

Discussion: GT and ff decays of 134 In

Discussion: GT and ff decays of 134 In

Monika Piersa-Siłkowska (University of Warsaw)

Discussion: GT and ff decays of ¹³⁴In

Monika Piersa-Siłkowska (University of Warsaw)

Method	P_{1n} (%)	P_{2n} (%)
QRPA-1	0.60	99.4
QRPA-2	6.5	86.7
QRPA + HF	78	15
RHB + RQRPA	18.9	46.8
EDM	64.5	2.2
EDM_{cutoff}	28	39
Experiment	89(3)	9(2)

Discussion: Predictions for $P_{1n/2n}$ of ¹³⁴In

Method	P_{1n} (%)	P_{2n} (%)	
QRPA-1	0.60	99.4	GT only + cutoff
QRPA-2	6.5	86.7	GT + ff + cutoff
QRPA + HF	78	15	$GT + ff + n vs. \gamma$
RHB + RQRPA	18.9	46.8	GT + ff + cutoff
EDM	64.5	2.2	$GT + ff + n \text{ vs. } \gamma$
EDM_{cutoff}	28	39	GT + ff + cutoff
Experiment	89(3)	9(2)	

Discussion: Predictions for $P_{1n/2n}$ of 134 In

"Cutoff" method

PHYSICAL REVIEW C 93, 025805 (2016)

Large-scale evaluation of β -decay rates of *r*-process nuclei with the inclusion of first-forbidden transitions

T. Marketin,¹ L. Huther,² and G. Martínez-Pinedo^{2,3}

C. β-delayed neutron emission

 β -delayed neutron emission probabilities are another component in the late stages of *r*-process nucleosynthesis. Here we approximate the probability of emission of *x* neutrons as the ratio of the rates between S_{xn} and $S_{(x+1)n}$ separation energies to the total decay rate, i.e.,

$$P_{xn} = \frac{\sum_{i,E_i=S_{xn}}^{\min(Q_{\beta},S_{(x+1)n})} \lambda_i}{\sum_i \lambda_i}$$

Combined QRPA+HF approach

PHYSICAL REVIEW C 94, 064317 (2016)

Neutron- γ competition for β -delayed neutron emission

M. R. Mumpower,* T. Kawano, and P. Möller

Monika Piersa-Siłkowska (University of Warsaw)

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of ¹³⁴In and ¹³⁵In

Seminarium Fizyki Jądra Atomowego 24/31

Top panels: - t > 600 ms, - no gate Bottom panels: t < 400 ms, long-lived background subtracted

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of 134 In and 135 In

(6,7,8)

(6.7.8)5 5010

4759

2912

2478

2167

1930

 $S_n = 3631(4)$

125. 726

Monika Piersa-Siłkowska (University of Warsaw)

 β -decay study of 134 In and 135 In

Seminarium Fizyki Jądra Atomowego 25/31

(6,7,8) 5

(6,7,8)

5010

4759

Monika Piersa-Siłkowska (University of Warsaw)

Results: decay scheme of ¹³⁵In

Monika Piersa-Siłkowska (University of Warsaw)

Shell-model predictions: ¹³⁵Sn

 $(9/2^+)$

13.5

Monika Piersa-Siłkowska (University of Warsaw)

Shell-model predictions: ¹³⁴Sn

v li13/2 not included

Jin2011

H. Jin et al., PRC 84, 044324 (2011).

Kart2007

M. P. Kartamyshev et al., PRC 76, 024313 (2007).

Yuan2016

C. Yuan et al., PLB 762, 237 (2016).

Cov2011

A. Covello et al., JPConf.Ser. 267, 012019 (2011).

Monika Piersa-Siłkowska (University of Warsaw)

Expt.

 β -decay study of ¹³⁴In and ¹³⁵In

6400

Discussion: β *n*-decay branching ratios

		Nucl	Nucleus		³³ In	13	⁵ In
		Metl	Method		P_{2n}	P_{1n}	
GT only + cutoff		off QRP	QRPA-1		0.4	86.2	
	GT + ff + cuto	ff ORP	QRPA-2		0.2	23.5	
GT + ff + n vs v		v ORPA	ORPA+HF		0	86	
GT + ff + cutoff		ff RHB+B	RHB+RORPA		0.4	49	
	GT + ff + n vs	v ED	FDM		0	52.4	
GT + ff + cutoff		ff EDM	EDM_{cutoff}		-	-	
		Experi	ment:	90(3)	-	-	
_				-			
	Decay Daughter branch nucleus	r Energy (keV)	Relative intensity				
	$\beta \gamma^a$ ^{135}Sn $\beta \gamma^a$ ^{135}Sn	950.3(3) 1220.9(3)	7(1) 4.0(9)	-			
	βn ¹³⁴ Sn	173.8(3)	25(5) ^b	Trar	sition inter	nsities	
	$\beta 1n$ ¹³⁴ Sn	347.4(3)	74(5) ^b	su	ggest that	the	
	$\beta 1 n^a$ ¹³⁴ Sn	595(1) ^e	$11(5)^{d}$		BIn-decay		
	$\beta 1n$ ¹³⁴ Sn	725.6(3)	100(6)	bra	inch domin	ates	
	$\beta 1n$ ¹³⁴ Sn	857.2(3)	7(1)	010	unen dommi	ates	
	$\beta 1n$ ¹³⁴ Sn	1093.8(6)	6(1)				
	$\beta 1n$ ¹³⁴ Sn	1404.8(6)	3.9(8)				
	$\beta 2n$ ¹³³ Sn	854.0(8)	1.6(9)	-			
	$\beta 2n$ ¹³³ Sn	1562.4(8)	2.0(6)				
	$\beta 2n$ ¹³³ Sn	2003.3(8)	1.8(6)				
	$\beta 2n^{e}$ ¹³³ Sn	2434.2(7)	2.6(7)				

Monika Piersa-Siłkowska (University of Warsaw)

 $\beta\text{-decay}$ study of ^{134}In and ^{135}In

 P_{2n} 8.3
64.3
10

41.2

1.2

- β decays of ^{134,135}In provide unique conditions for the simultaneous investigation of one- and two-neutron excitations as well as states formed by couplings of valence neutrons to excitations of the ¹³²Sn core.
- The $\beta\gamma$ and $\beta 2n$ -decay branches of ¹³⁴In have been **observed for the first time**.
- ► Although the prevalent $\nu 1g_{7/2} \rightarrow \pi 1g_{9/2}$ GT transition feeds neutron-unbound states at excitation energies exceeding S_{2n} of ¹³⁴Sn, the ¹³⁴In β decay is dominated by β 1n emission.
- A significant contribution of γ-ray emission from neutron-unbound states populated in ¹³³Sn and ¹³⁴Sn was observed.
- Candidate for a γ ray depopulating the missing νli_{13/2} s. p. state in ¹³³Sn was observed.
- Transitions following the β decay of ¹³⁵In were identified for the first time.

Outlook

Completed	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
	Proposal to the ISOLDE and Neutron Time of Flight Comminee
Neutron spectroscopy	Neutron unbound single particle states in ¹¹³ Sn from the beta decay of ¹¹³ U 7/10/2016 Mol Digital Contraction of the Probability of the Antonional Contraction of the Contraction Mol Digital Preserve (Content) A Fastewise A Contraction (Contraction Contraction Section Hadron Ferrori (A Base's St Davids'), D Javid's K Base's K Base's T Bandare Neur Franker's K Base's N Davidsen's Mangares' (C Manatha's K Base's T Bandare Neur Franker's K Base's N Davidsen's Mangares' (C Manatha's K Base's T Bandare Neur)
^{133,133} <i>m</i> In β decay	Staroffandi, A., Orgin, L., K., Martin, K., Kang, K., Kang, K., Kang, K., Kang, K., Kang, K., Kontyan, K., Kang,
M. Madurga <i>et al</i> .–	Yannina de Franc Compación, Edition de Instanto de Natores, El 4997 Yalensis, Epster. Ubsparsence el Princi Compación y Universita de Compaciones de Paris, Nator Dante, Instanto Tantante de Stactante ad Alexando Alexando Departement of Yangi, Marci Dante, Instanto 4056, DNA, Observator de Compación y November de Compaciones de Vendo de Vendo de Vendo Reference de Compación y November de Vendo de Vendo de Vendo de Vendo Natores de Compación de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Compación de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo de Vendo Natores de Vendo de Vendo Natores de Vendo de

Accepted

Neutron

spectroscopy

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Beta-delayed neutron emission of 134In and search for i12/2 single particle neutron state in 1355n

13/05/2020

¹³⁴In β decay

R. Grzywacz, M. Karny et al.

Under review

Neutron

spectroscopy

¹³⁵In β decay

R. Grzywacz,

A. Korgul et al.

R. Grzywacz¹², M. Maduna¹, M. Karm², A. Alzora¹, J.M. Allmond¹, D. Bardavan¹, J. Benito⁴, N. Brewer' A. Fijaškowska' L.P. Gaffney' J. Heideman' S. Neupane' T. King', N. Kitamura', L. M. Fraile⁴, M. J. Garcia Borge⁴, A. Illana^{8,10}, Z. Janas⁹, K.L. Jones¹, T. Kawano¹¹, K. Kotos¹², A. Konzul¹, R. Lich¹³, C. Mazznech¹, K. Miernik¹, J.R. Munas⁴, R.D. Paze¹, M. Piersa¹, B.C. Rasso¹, M.M. Rajabali²⁴ K. Rykaczewski² K. Sieal⁴ M. Singh² C. Sotty⁴ O. Tenghlad⁴ N. Warr²¹ H. DeWitte¹⁸, R. Yokovama¹, Z. Xu

Dert, of Physics and Astronomy, University of Tennessee, Knowville, Tennessee 37996, USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, Teanessee 37830, USA. Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Neutron emission from unbound states in ¹²⁵Sn

28/09/2021

B. Greewacel², A. Konnd³, M. Madurna¹, L. M. Fraile¹, Z. Xu¹, M. Piersa-Silkenedes¹, J. Benito¹ A Alexer¹ 1.M. Allmond² D. Bardavan³, P. Bielak³ A. Fisalkmanka³, L.P. Gaffner⁴, Gundila' I Heideman' C. Henrich'S Neurane' T. Kine' N. Kitamura' I. Koszuk' M. J. García Borger, A. Illana^{11,11}, Z. Janar, K.L. Jones, A. Karkainen¹¹, M. Karny¹, T. Kawano¹¹, K. Kolos¹¹ T. Kröll, A. Lama" R.Lics", M. Llanne, A.I. Morales, C. Mazznacht, C. Mihail, K. Miernik, J.R. Munae', S.E.A. Orrigo', R.D. Page', Zs. Podolyak*, W. Poklepa', B.C. Rasco', M.M. Rajabali¹⁷, B. Rubio¹, M. Rudigier⁶, K. Rykaczewski¹, K. Siegl¹, M. Simh¹, M. Sieguniuk¹, M. Stryiczyk", K. Solak', C. Sotty', O. Tenablad', M. Treschuw, N. Warri, K. Winmer', H. DeWitte20, R. Yokovama1,

Dent of Physics and Astronomy, University of Tempenae, Knowelle, Tempenae 32906, USA ¹ Provide Division, Oak Riday National Laboratory, Oak Riday, Tennesses 3783), USA, Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland.

Accepted

Μ

Total absorption spectroscopy

^{132–134}In β decay

A. Fijałkowska et al.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Total absorption spectroscopy of neutron-rich indium isotopes beyond N=82

A. Filadkowska¹, B. Rubio², M. Fallet³, L.M. Fraile¹, F. Nacher², K. Abrahama⁵ G de Angelia⁶ A Alexera² J Arramunt³ B Bastin⁷ A Beloregere³ J Benito⁴ N. Bernier⁵, M.J.G. Borge⁸, N.T. Beewer⁶, J.A. Briz⁴, T.D. Bucher³, C. Ducoin¹⁶ 1. Ducnary¹⁰, J. Duckmet¹⁰, S. Esnadu⁴, A. Esninoan⁸, M. Estienne³, F. Ganioith¹¹ W Gelletly¹² I. Giot⁵ R Greener¹³ V Guadilla¹ Z Janua⁴ A Junerland⁴ M. Karny¹, R. Kenn³, T. King¹³, A. Korgul¹, R. Liea¹⁴, J. López-Herraiz⁴,

M. Machirua¹³, M. Martini¹⁵, I. Matoa¹⁶, C. Mazzocchi¹, K. Miernik¹, F. Molina¹⁷ A.I. Morales², J.R. Murias⁴, F. de Oliveira², N. Orre³, S. E. A. Orrigo², T. Parry¹², A. Perca⁷, S. Péru¹⁰, M. Piersa¹, Z. Podolcak²², A. Porta⁸, B.C. Rasco⁸, B. Rebeiro¹⁰ N. Redon¹⁰, K. Rykarsenski⁰, L. Sahin¹¹, D. Sancher, Parcerias¹, K. Sice¹²³ M. Steranisk¹, O. Stéwaski¹⁰, V. Sánchoz-Tembelene⁴, D.W. Stracene⁹, J.L. Tain² O. Tenghlad⁴, J.-C. Thomas⁷ and J.M. Udias⁴, V. Valladolid⁴, Z. Xu¹³, R. Yokovama⁴³

Collaboration

M. Piersa-Siłkowska ^{0,1,*} A. Korgul^{1,+} J. Benito² L. M. Fraile^{2,3} F. Adamska¹ A. N. Andrevev⁴ R. Álvarez-Rodríguez⁵ A. E. Barzakh,⁶ G. Benzoni,⁷ T. Berry,⁸ M. J. G. Borge,^{3,9} M. Carmona,² K. Chrysalidis,³ J. G. Correia,^{3,10} C. Costache,¹¹ J. G. Cubiss.^{3,4} T. Day Goodacre.^{3,12} H. De Witte.¹³ D. V. Fedorov.⁶ V. N. Fedosseev.³ G. Fernández-Martínez.¹⁴ A. Fijałkowska,¹ H. Fynbo,¹⁵ D. Galaviz,¹⁶ P. Galve,² M. García-Díez,² P. T. Greenlees,^{17,18} R. Grzywacz,^{19,20} L. J. Harkness-Brennan,²¹ C. Henrich,²² M. Huyse,¹³ P. Ibáñez,² A. Illana,^{13,23} Z. Janas,¹ K. Johnston,³ J. Jolie,²⁴ D. S. Judson,²¹ V. Karanvonchev,²⁴ M. Kicińska-Habior,¹ J. Konki,^{17,18} Ł. Koszuk,¹ J. Kurcewicz,³ I. Lazarus,²⁵ R. Lică,^{3,11} A. López-Montes,² H. Mach,²⁶ M. Madurga,^{3,19} I. Marroquín,⁹ B. Marsh,³ M. C. Martínez,² C. Mazzocchi,¹ K. Miernik,¹ C. Mihai,¹¹ N. Mărginean,¹¹ R. Mărginean,¹¹ A. Negret,¹¹ E. Nácher,²⁷ J. Oiala,¹⁷ B. Olaizola,^{28,29,3} R. D. Page,²¹ J. Pakarinen,¹⁷ S. Pascu,¹¹ S. V. Paulauskas,¹⁹ A. Perea,⁹ V. Pucknell,²⁵ P. Rahkila,^{17,18} C. Raison,⁴ E. Rapisarda,³ K. Rezynkina,¹³ F. Rotaru,¹¹ S. Rothe,³ K. P. Rykaczewski,²⁰ J.-M. Régis,²⁴ K. Schomacker,²⁴ M. Siłkowski,¹ G. Simpson,³⁰ C. Sotty,^{11,13} L. Stan,¹¹ M. Stănoiu,¹¹ M. Stryjczyk,^{1,13,17} D. Sánchez-Parcerisa,² V. Sánchez-Tembleque,² O. Tengblad,⁹ A. Turturică,¹¹ J. M. Udías,² P. Van Duppen,¹³ V. Vedia,² A. Villa,² S. Viñals,⁹ R. Wadsworth,⁴ W. B. Walters ³¹ N. Warr ²⁴ and S. G. Wilkins³ (IDS Collaboration) ¹Faculty of Physics, University of Warsaw, PL 02-093 Warsaw, Poland ²Grupo de Física Nuclear and IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, E-28040 Madrid, Spain

³CERN, CH-1211 Geneva 23, Switzerland

PHYSICAL REVIEW C 104, 044328 (2021)

First β -decay spectroscopy of ¹³⁵In and new β -decay branches of ¹³⁴In

M.P.-S. acknowledges the funding support from the Polish National Science Center under Grants No. 2019/33/N/ST2/03023 (PRELUDIUM grant) and No. 2020/36/T/ST2/00547 (Doctoral scholarship ETIUDA)

Monika Piersa-Siłkowska (University of Warsaw)