Exotic Decays with Emission of Charged Particles

18 years ago...

The Current Status of 2p Emission Studies

Marek Pfützner

Institute of Experimental Physics Warsaw University

XXXIX Zakopane School of Physics August 31 – September 5, 2004

18 years ago...

The Warsaw OTPC

OTPC - prototype

OTPC milestones

Miernik et al., PRL 99 (07) 192501

Pomorski et al., PRC 83 (2011) 061303(R)

Kubiela et al., to be published (2022)

p-p momentum correlations for ⁴⁵Fe

NSCL: ⁵⁸Ni @ 161 MeV/u + Ni \rightarrow ⁴⁵Fe

Miernik et al., PRL 99 (2007) 192501

10

8

6

75 events reconstructed

- Proton-proton correlations are complex and indicate a genuine 3-body phenomenon
- Good agreement with the 3-body model of Grigorenko et al.
- The correlation picture depends on the initial wave function

Grigorenko *et al.*, Phys. Lett. B 667 (2009) 30

0.0 0.2

0.4

0.8

1.0-1.0

p-p momentum correlations for ⁴⁵Fe

M.P. et al., Rev. Mod. Phys. 84 (2012) 567

Grigorenko et al., PLB 677 (2009) 30

2p radioactivity of ⁴⁸Ni

NSCL: ⁵⁸Ni @ 161 MeV/u + Ni → ⁴⁸Ni

Pomorski et al., PRC 83 (2011) 061303(R)

To be continued @FRIB

Physical Review C 50th Anniversary Milestones

First observation of two-proton radioactivity in ⁴⁸Ni

A rare form of radioactivity, in which a proton-laden nucleus decays toward stability via the simultaneous emission of two protons, was observed for ⁴⁸Ni. Using an optical time-projection chamber, the two-proton emission of four ⁴⁸Ni nuclei produced at the National Superconducting Cyclotron Laboratory was captured for the first time on CCD camera, marking a new era of optical detection of sub-atomic charged-particle processes in nuclear physics.

First observation of two-proton radioactivity in $^{\rm 48}{\rm Ni}$

M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dąbrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, A. Stolz, and S. Suchyta

2p decay of ⁵⁴Zn

RIKEN, 2019: ⁷⁸Kr @ 350 MeV/u + ⁹Be →
54
Zn

The production X-section: $\sigma = 3.5 \pm 0.8 \pm 0.7$ fb

Presented by Adam Kubiela

For 5 events we could determine the angle between both protons

Can 2p emission tell us something on Z=28 shell closure?

p-p correlations around Z=28

β -delayed particle emission

➤ Far from stability Q-values are large → many delayed-particle emissions are open

Neutron halos \rightarrow charged particles

Gamma spectroscopy → Pandemonium effect!

- Strong beta transitions to highly excited states are suppressed by kinematics and appear as weak radiation channels
- Low-energy delayed protons may be of interest to astrophysics

Decays of ⁴⁵Fe and ⁴³Cr

β 3p in ³¹Ar?

PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oin M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

Decay of ³¹Ar

▶ GSI-FRS, August 2012, beam from the synchrotron – we cannot stop it upon trigger 😕

→ A new acquisition mode – a series of shorter expositions ("movie")

Decay of ²³Si

Decay of ²³Si

- > β -delayed (multi) particle emission from ²³Si @ Texas A&M, MARS separator, 2017
 - over 7.5 k implanted ²³Si ions
 - branching ratios: $b_{\beta p} = 82(1)\%$ and $b_{\beta 2 p} = 7.7(4)\%$ (lit. $b_{\beta p} = 71\%$ and $b_{\beta 2 p} = 3.6\%$)
 - first observation of β 3p decay of ²³Si, $b_{\beta3p} = 3^{+4}_{-2} \cdot 10^{-4}$ (2 events)
 - tentative observation of β α p decay of ²³Si, $b_{\beta\alpha\rho} = 1.4^{+3.3}_{-1.2} \cdot 10^{-4}$ (1 event)

Zakopane Conference on Nuclear Physics, 28.08-04.09, Zakopane, Poland

Seminar of A. Ciemny, 9 VI 2022

All known cases of β 3p

Probing the 2n halo of ⁶He

> ⁶He decays into $\alpha + d$ with a very low branching

R. Raabe et al., Phys. Rev. C80 (2009) 054307

"Bunch" mode for ⁶He @ISOLDE

Experiment at ISOLDE, August 2012

- Bunches of about 10⁴ ions of ⁶He accelerated by REX-ISOLDE to 3 MeV/u were implanted into the OTPC.
- After implantation, an exposure of 650 ms was started to see the decays.
- Clear images of decay events with α + d tracks were recorded.

A CCD image showing a bunch of implanted ⁶He ions (red) and a ⁶He $\rightarrow \alpha + d$ decay (green)

The spectrum of α + d

A difficult case: ¹¹Be β p?

- In halo nucleus
- **>** The β - α emission observed
- > The β -p decay possible

 $Q_p = 281 \text{ keV}$, the predicted branching: $b_p < 10^{-6}$

¹¹Be @ ISOLDE

▶ Experiment at ISOLDE, 2018 → bunch and movie modes combined

- Bunches of about 10⁴ ions of ¹¹Be accelerated by HIE-ISOLDE to 7.5 MeV/ implanted into the OTPC every 1 min.
- After implantation: 252 frames of 33 ms (13 s) + 47 s break
- about 1.4 M frames recorded featuring about 1.5 M $\beta\alpha$ events

$\beta \alpha$ decay of ¹¹Be

$\beta \alpha$ or βp ?

Low energy events may include:

- α + ⁷Li
- p + ¹⁰Be
- $t + {}^{8}Be \rightarrow t + \alpha + \alpha$
- all above but cut on the top wall

To be presented by N. Sokołowska at this seminar ...

Further measuremens focused on low-energy charged particles are needed!

Current status on ¹¹Be

➤ The appearance of ¹⁰Be atoms in a sample of collected ¹¹Be (ISOLDE) was searched by the AMS technique → $b_p(^{11}Be) = 8.3(9) \times 10^{-6}$ Riisager at al., Phys. Lett. B 732 (2014) 305 Later corrected → $b_p(^{11}Be) < 2.2 \times 10^{-6}$ Riisager at al., EPJ A 56 (2020) 100

Summary

• The OTPC detector is a simple and efficient tool to search for rare decays (like multiparticle) and to investigate particle decays obscured by beta background.

 It can provide precise branching ratios and angular correlations. Low energies can be reconstructed but with worse energy resolution than with Si detectors – complementarity!

2p correlations measured for ⁴⁵Fe indicate non trivial 3-body character.
Correlations needed for ⁴⁸Ni and ⁵⁴Zn.
Can we see the Z=28 shell closure in the 2p decay data?

Thank you!

The real work was mainly done by:

- Wojciech Dominik
- Henryk Czyrkowski
- Zenon Janas
- Chiara Mazzocchi
- PhD students:
 - Krzysztof Miernik
 - Marcin Pomorski
 - Aleksandra Lis/Ciemny
 - Adam Kubiela
 - Natalia Sokołowska

