

nowe narzędzie do badania struktury jąder atomowych bogatych w protony

Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów

Struktura jąder bogatych w protony

courtesy P.-A. Soderstrom NUSPIN 2017 meeting

Idea eksperymentów

Nowe?

~30 lat eksperymentów OSIRIS (Berlin), NORDBALL, GASP, EUROBALL, EXOGAM różne układy neutronów → Neutron Wall

NEDA (NEutron Detection Array)

- Główne zastosowanie: filtr krotności neutronów w reakcjach fuzji-ewaporacji, w których emisja neutronów jest rzadka (jądra bogate w protony, N~Z)
- Układ będzie używany w połączeniu z detektorami gamma AGATA, EXOGAM2, GALILEO, PARIS, EAGLE w eksperymentach z intensywnymi wiązkami stabilnymi oraz z wiązkami radioaktywnymi
- Oczekiwane parametry:
 - Wydajność detekcji i dyskryminacji neutronów lepsza niż dla istniejących urządzeń (NWall)
 ε(1n) ≈ 40% (20-25%), ε(2n) ≈ 6% (1-3%) ε(3n) ≈ 1% (0.1 %)
 - Doskonałe rozróżnienie neutron-gamma oraz rozróżnienie 1n/2n/3n
 - Zdolność do pracy przy dużej częstotliwości zliczeń (kwanty gamma).

$\epsilon(1n) \approx 40\% (20-25\%), \epsilon(2n) \approx 6\% (1-3\%) \epsilon(3n) \approx 1\% (0.1\%)$ I co z tego?

Próba obserwacji ¹⁰⁰ In w reakcji ⁴⁵Sc(⁵⁸Ni, 3n)¹⁰⁰In, EUROBALL effektywnie ~300 godz.

NEDA — strategia

- Wybór scyntylatora (ciało stałe? deuterowany?)
- Optymalizacja wielkości i geometrii pojedynczego detektora, geometrii całego układu, odległości od tarczy
- Fotopowielacz, dzielnik napięcia?
- Cyfrowa elektronika.
- Algorytmy on-line i off-line umożliwiające określenie czasów, rozróżnienie n-gamma, rozróżnienie 1n/2n/3n, odrzucenie przypadków "pile-up"

Mechanizm detekcji neutronów i scyntylator

energia neutronów od ~0.5 do ~10 MeV

• rozpraszanie elastyczne $E_{r,max} = E_n \frac{4A}{(1+A)^2}$

jedyny "dobry" proces: elastyczne rozpraszanie na protonach

- rozpraszanie nieelastyczne ¹²C(n,n'γ)¹²C*
- wychwyt neutron ${}^{12}C(n,\alpha){}^{9}Be$

najczęściej stosowany scyntylator: C₈H₁₀ (ksylen, BC501, EJ520)

rozważano użycie scyntylatora "deuterowanego" : C_6D_6 (BC537)

nieizotropowe rozpraszanie elastyczne (w CM) ułatwia "liczenie" neutronów?

Rozróżnienie neutron-gamma

 Oddziaływania z dużą gestością jonizacji (neutrony) powodują zwiększone obsadzenie tripletowych stanów molekularnych (opóźniona emisji światła).

Czasy wyświecania dla BC501: 3.16 ns, 32 ns, 270 ns Składowa wolna (270 ns) dla γ : 10%, dla n: 30%

P.-A. Soderstrom

oczekiwane prawdopodobieństwo błędnej interpretacji n-γ: <0.5 %

Rozróżnienie 1n/2n/....

Optimalizacja wielkości pojedynczego detektora i wybór scyntylatora

Wybór PMT, cyfrowe algorytmy "CFD", cyfrowa dyskryminacja n/y

X.L.Luo et al. NIM A767 (2014) 83

NGD Artificial Neural Networks

trudność 1: zestaw danych do nauki trudność 2: algorytm modyfikacji wag w trakcie uczenia wymóg: uniwersalność dla różnych detektorów

P.-A. Söderström

Figure 20: Global electronics layout for 48 NEDA detectors

Kompletny układ

Faza 1

1π (54 detektory) połączone z 42 detektorami NWall

Production of detectors

- → Detector vessels and PMT housings are made by welding flanges to hexagonal profiles
- \rightarrow EJ520 TiO₂ paint; TorrSeal; 5" 5mm BK7 glass
- \rightarrow Expansion bellow Δ T = 40 K.
- \rightarrow EJ301 (BC501) liquid scintillator
- \rightarrow SBA R11833-100HA 5" PMT (32% Q.E.)
- \rightarrow custom transistorized VD provided by Świerk
- \rightarrow mu-metal shielding (1 mm)

Fig. 1. Elements used for the construction of the NEDA detector: detector cell, with extension pipe (1); PMT (2); PMT housing (3); PMT pusher (4); the bellow (5) and the support for the bellow (6).

G. Jaworski et al, LNL

llość światła

neutron 500 keV -> 56 keVee -> 159 phe

G. Jaworski et al, LNL

Mechanika

Ian Burrows, Mike Cordwell, Alant Grant

→ rama NEDA & NW — projekt Daresbury
→ rama NEDA wykonana, sprawdzona w Daresbury
→ rama NWall wykonana w UK, Legnaro, PL

Pierwsze testy na wiązce

- 16 detektorów NEDA, DIAMANT I EXOGAM
- Dane z trzech układy detektorów zbierane w trybie w pełni cyforwym z użyciem NUMEXO2, GTS i nowego "Trigger Processor"
- Pomiary zostały wykonane w listopadzie/październiku

Testy układu NEDA listopad/grudzień

Trzy krótkie pomiary: 36Ar + 58Ni (2UTs — 16 hours) 5 Nov. 78Kr + 58Ni (3UTs — 24 hours) 11 Nov. 124Xe + 12C (3UTs — 24 hours) 3 Dec.

AGATA @ 145 mm NEDA(54)@ 510 mm NW (42)@ 650 mm

Obecnie

- 54 detektorów NEDA 42 detektory NWall
- Test na wiązce 4-7 kwietnia 2018
- Eksperymenty
 - od 19 kwietnia

AGATA

×

C*

(Design and characteristics)

 $4\pi \gamma$ -array for Nuclear Physics Experiments at European accelerators providing radioactive and stable beams

Nain features of	f AGATA
------------------	---------

 Efficiency:
 43% (M_{γ} =1)
 28% (M_{γ} =30)

 today's arrays
 ~10% (gain ~4)
 5% (gain ~1000)

 Peak/Total:
 58% (M_{γ} =1)
 49% (M_{γ} =30)

 today
 ~55%
 40%

 Angular Resolution:
 ~1° \rightarrow

 FWHM (1 MeV, v/c=50%)
 ~ 6 keV !!!

 today
 ~40 keV

 Rates:
 3 MHz (M_{γ} =1)
 300 kHz (M_{γ} =30)

 today
 1 MHz
 20 kHz

- 180 large volume 36-fold segmented Ge crystals in 60 triple-clusters
- Digital electronics and sophisticated Pulse Shape Analysis algorithms allow
- Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking

S.Akkoyun et al. NIM A668 (2012) 26

AGATA at GANIL

Obecnie do: 35 kryształów (Maks. w GANIL 45, 1π)

E. Clement et al. NIM A855 (2017) 1

Studies of excited states in ^{102,103} Sn				
to deduce			100	
two-body neutron interactions,		8 <u>- 574</u> 9	¹⁰² Sn	8 [_] 5709
single-particle energies		7- 5001		7 ⁻ 5446 9 ⁻ 5320
and N = Z = 50 core excitations $(1/2)$		5^{-} 5272		5 ⁻ 5314
		9 <u> </u>		9 <u>- 479</u> 0
 Indirect information on excited states in ¹⁰⁰ S 9⁻ (core excited 3⁻ phonon coupled to 6⁺ in ¹⁰² 8^{+,} 10⁺ (2⁺,4⁺ core excited states coupled to 	n by studyin ²Sn) ⁶⁺ in ¹⁰² Sn)	ig:	9 <u>- 454</u> 6 7 <u>- 4344</u> 5 ⁻ 4298	GDSH2 and 1p1h
9 ⁻ alternatively $v(g_{7/2}h_{11/2})$ state		GDSH1	PGDSH	exc. from
• $5^{+,} 6^{+}_{2} - \nu(d_{5/2} g_{7/2})$ matrix elements • puzzle of the 6^{+}_{1} decay and lifetime	Experiment	6 <u>+ 282</u> 9	6 <u>+ 267</u> 9	p _{1/2} 6 ⁺ 2716 5 ⁺ 2676
	$\begin{array}{c} (6^+) & 2017_{48} \\ \hline (4^+) & 1969 \\ 497 \\ (2^+) & 1472 \end{array}$	6 <u>+ 198</u> 0 4 ⁺ 1941 2 <u>+ 156</u> 3	$ \begin{array}{c} 6^{+} & 2088 \\ \overline{} & \overline{} \\ 4^{+} & 2010 \\ 2^{+} & 1689 \end{array} $	4 <u>+ 205</u> 6 6 ⁺ 1978 2 ⁺ 1744
J. Nyberg, A. Ataç, M.Palacz et al	1472			
wiązka 28/04 – 9/05/2018	0+ 0	0 <u>+ 0</u>	0 <u>+ 0</u>	0 <u>+ 0</u>

10+

8+

6+ 4⁺

2+

0+

<u>1746</u> 1723

1223

0

5416

<u>473</u>5

GDS

and 3p3h core

exc. from g_{9/2}

Studies of excited states in ^{102,103}Sn to deduce two-body neutron interactions, single-particle energies and N = Z = 50 core excitations (2/2)

 E_x of 17/2⁺, 15/2⁺ (ve νh_{11/2} states at abo core excited states 19 	ery pure configura ut 4 MeV 9/2+ and 21/2+ to v	ations of ν (d _{5/2} , g _{7/} verify Z=50 gap	₂)) (C)	25/2 <u>+ 6</u> 450 23/2 <u>+ 6</u> 191
				21/2 <u>+ 5</u> 436
				19/2 <u>+ 5013</u>
(a)	(b)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(d)
experiment	$15/2^+$ $17/2^+$ 2006 $11/2^+$ $11/2^+$	2250 2142 11/2 2186 1977	11/2 <u>265</u> 4	$ 17/2^+ 2264 \\ 13/2^+ 2070 \\ 15/2^+ 2043 $
$(1775) 1785 (13/2^+)$ $289 1486 298 (11/2^+)$ $578 289$ 1197 1318	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1829 1418 1212 1018	$ \begin{array}{rcl} 15/2^{+} & = & 1882 \\ 13/2^{+} & 1758 \\ 11/2^{+} & 1436 \\ 9/2^{+} & 1419 \end{array} $	15/2 ⁺ 2045 11/2 ⁺ 1711 9/2 ⁺ 1438
$1029 \\ 168 \\ 168 \\ 168 \\ 168 \\ (7/2^+) \\ 168 \\ (5/2^+)$	7/2+ 177 5/2 + 0	¹⁰³ Sn	$7/2^+$ <u>155</u> $5/2^+$ 0	7/2 <u>+</u> 278 5/2 <u>+</u> 0

Współpraca

GANIL (G. de France et al.)

Legnaro, Padova (J.J.Valiente-Dobon (PM) et al.)

Uppsala (J. Nyberg et al.)

Valencia (A. Gadea et al.)

Istanbul, Negde (M.N.Erduran et al.)

Warszawa, Kraków, Świerk

Podsumowanie

- Układ NEDA umożliwia selekcję rzadkich produktów reakcji fuzji-ewaporacji.
 Połączony z układem detektorów HPGe otwiera nowe możliwości badania jąder bogatych w protony.
- Eksperymenty z układem AGATA-NEDA rozpoczynają się w GANIL w kwietniu (8 zaakceptowanych eksperymentów, 5 w b.r.)

Polskie finansowanie:

- Grant NCN Harmonia, koszty operacyjne AGATA, PARIS, NEDA
- Grant OPUS 2017/25/B/ST2/0156
- Projekty w ramach współpraca COPIN-IN2P3 oraz COPIGAL

Postdoc poszukiwany (zatrudnienie w ŚLCJ): slcj.uw.edu.pl/en/post-doctoral-position/