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Plan
• Neutron star - composition and equation of state 

• EOS construction for different density ranges 
- outer crust - nuclei measured in laboratory 
- inner crust - models of nuclei 
- core - extrapolation of nuclear parameters 

• Astrophysical measurements 
- masses of neutron stars 
   - best-measured binary system with Double Pulsar 
   - recent measurement of massive pulsar J0952-0607 
- radius determination (NICER new results) 
- moment of inertia (not measured yet) 
- tidal deformability GW170817 (LIGO/VIRGO measurement) 

• Consequences for the theory of dense matter.  
- larger maximum mass       stiffer EOS, phase transition, exotic core.  
- relatively large radius   stiff eos 



Neutron stars - observations
 pulsars observed 

Electromagnetic - broad range of wavelengths (1967) 
Gravitational waves (2017) 
Mainly observed in radio: 
Pulsars: periods  1.4 ms - 23 s,  

∼ 3500

P = ·P = 10−22 − 10−10

1450 N. Wex

2 Radio Pulsars and Pulsar Timing

Radio pulsars, i.e., rotating neutron stars with coherent radio emission along their
magnetic poles, were discovered in 1967 by Jocelyn Bell and Antony Hewish
(Hewish et al. 1968). Fairly soon after their discovery, it was clear that radio pulsars
are rapidly rotating, highly magnetized (typically of order 1012 G) neutron stars,
which emit radio waves along their magnetic poles. To date, about 2500 of these
“cosmic lighthouses” are known, out of which about 10 % reside in binary systems
(Manchester et al. 2005). The population of radio pulsars can be nicely presented in
a diagram that gives the two main characteristics of a pulsar: the rotational period
P and its temporal change PP due to the loss of rotational energy (see Fig. 1). Fast-
rotating pulsars with small PP , i.e., low B field, so-called millisecond pulsars, appear
to be particularly stable in their rotation. On long time scales, some of them rival
the best atomic clocks in terms of stability (Hobbs et al. 2012). This property makes
pulsars ideal tools for high-precision tests of gravity theories. In such tests, pulsar
observations are simply clock-comparison experiments to probe the space-time of
a binary pulsar: on the one hand, the “pulsar clock” is read off by counting the
pulses in the pulsar signal, i.e., determine its rotational phase, and on the other
hand, the arrival times of the pulses at the radio telescope are measured with the
local atomic clock. After fitting an appropriate timing model to these arrival times,
one obtains a phase-connected solution for all the timing data points of a pulsar.
In the phase-connected approach lies the true strength of pulsar timing: the timing

Fig. 1 Period-period derivative diagram for known radio pulsars (Manchester et al. 2005). Black
dots indicate radio pulsars in globular clusters. Red circles indicate radio pulsars in binary systems.
The green lines give show the estimated surface dipole magnetic field (Lorimer and Kramer 2004)
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Table 1 Examples of precision measurements for various astrometric and physical quantities,
using pulsar timing. A number in brackets indicates the (one-sigma) uncertainty in the last digit(s)
of each value

Rotational period of a
pulsar:

5.757451924362137(2) ms PSR J0437!4715 Verbiest et al. (2008)

Distance: 157(1) pc PSR J0437!4715 Verbiest et al. (2008)
Proper motion in the sky: 140.915(1) mas yr!1 PSR J0437!4715 Verbiest et al. (2008)
Orbital period of a binary
pulsar:

1.533449451246(8) d PSR J1909!3744 Matthews et al. (2015)

Orbital eccentricity: 0.0000749402(6) PSR J1713+0747 Zhu et al. (2015)
Relativistic periastron
advance:

4:226598.5/ deg yr!1 PSR B1913+16 Weisberg et al. (2010)

Masses of a neutron
stars:

1:4398.2/ Mˇ PSR B1913+16 Weisberg et al. (2010)

Mass of a white dwarf: 0:2131.25/ Mˇ PSR J1909!3744 Matthews et al. (2015)

model has to account for every observed pulse over a time scale of several years,
in some cases even several decades, without losing a single rotation of the pulsar.
This makes pulsar timing extremely sensitive to even tiny deviations in the model
parameters and therefore vastly superior (!106 times) to a simple measurement of
Doppler shifts in the pulse period. Table 1 illustrates the capabilities of pulsar timing
for various experiments, like mass determination, astrometry, and gravity tests.

Dropping an unknown constant factor, the proper time T of the pulsar is linked
to its rotational phase ! via

! D !0 C ".T " T0/ C 1

2
P".T " T0/2 C : : : (1)

where T0 is a fixed epoch, and " denotes the rotational frequency. The frequency
derivative P" accounts for the slow spin-down rate of the pulsar, which might not be
constant over the time span of observations, making it necessary to fit for higher
time derivatives of ".

At the telescope one measures the topocentric time of arrival (TOA) of a pulse.
For details on the measurement process of TOAs, we refer the reader to Chapter 8
of Lorimer and Kramer (2004). The TOA is linked to the pulsar’s proper time of
emission via a timing model that accounts for all the delays that are observable
in the timing data. The time transformation can be split into two parts. First, the
transformation from a topocentric TOA to the (infinite frequency) TOA at the solar
system barycenter (SSB):

tSSB D #topo " D=f 2 C $E C $R C $S; (2)

where $E accounts for time dilation effects along the world line of the telescope,
$R represents the Roemer delay caused by the motion of the telescope in the
SSB frame, and $S accounts for the Shapiro delay (Shapiro 1964) caused by the



Neutron star - composition 
Outer crust -  
•  nuclei in the electron gas 
• neutronization - neutron rich nuclei, Z/A decreases inwards 
• neutron drip at the bottom of the outer crust 

Inner crust -  
•  nuclei in the electron  and neutron gas 
• neutronization - neutron rich nuclei 

Outer core -  
• neutrons, protons, electrons, muons 

Inner core -  
• neutrons, protons, electrons, muons 
• hyperons ? 
• quarks ? 

ρ < 4 ⋅ 1011 g/cm3

4 ⋅ 1011 < ρ < 1014 g/cm3

1014 < ρ < 5 ⋅ 1014 g/cm3

ρ > 5 ⋅ 1014 g/cm3

ρ0 ≃ 2.7 ⋅ 1014 g/cm3 ρ0c2 = 151 MeV/fm3 n0 = 0.16 fm−3

M⊙ = 2 ⋅ 1033 g



• NS crust vs. laboratory measurements

L. Suleiman et al.: Partially accreted crust

Fig. 2. Structure of Mackie & Baym outer crust compared to that of BSk21. Colors divide areas with di↵erent proton numbers (nuclei). For
Mackie & Baym, the nucleon number A is presented to give a complete definition of the shell (Acell, A,Z), for which the decimal logarithm of the
gravitational mass in solar mass is presented. The mass and radius of the shells are computed using Eqs. (11) and (10) for a total 1.4 M� of the
star, which corresponds to a radius for the Mackie & Baym and BSk21 total radius of 11.7 km and 12.6 km, respectively.

The mass and thickness of each shell are presented for the
Mackie & Baym and Brussels-Skyrme 21 models in Fig. 2. The
thickness and the gravitational mass of the shells for a given stel-
lar configuration can be approximated with high accuracy from
formulas established in Zdunik et al. (2016),
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where R6 is the NS radius divided by 10 km, �µ and �P cor-
respond to the thickness of the shell (crust) in baryon chemical
potential and pressure, respectively; those quantities are given in
MeV and 1030 dyn cm�2 respectively. In Fig. 2, a total NS mass
of 1.4 M� was selected for the two nuclear models of dense mat-
ter SLy4 with the Mackie & Baym crust and Brussels-Skyrme 21
(unified EoS for core and crust), to which corresponds a total
radius of the star of 11.7 km and 12.6 km, respectively. The outer
crust of the SLy4/Mackie & Baym model is thinner than that of
the Brussels-Skyrme 21 model, 429 m and 494 m, respectively.
The ratio of the outer crust thickness is equal to the square of
the ratio of the respective stellar radii, see Eq. (10). The accreted
crust for the Mackie & Baym model is made of 36 shells, includ-
ing 5 in the outer crust, for a total thickness of 722 m and a mass
of 3 ⇥ 10�3 M�.

The set of nuclei found in the originally catalyzed com-
pressed outer crust is displayed in Fig. 3, with that of the accreted
material and that of the catalyzed outer crust. There are around
170 nuclei appearing in the originally catalyzed compressed
outer crust; they overlap with the catalyzed nuclei, as catalyzed
matter is the stage of the originally catalyzed compressed outer
crust at �P = 0, and also with the accreted material nuclei
when the stage of compression reaches the fully accreted crust
approximation.

The composition of the originally catalyzed compressed
outer crust di↵ers from that of the fully accreted crust and
from that of the catalyzed one. The composition of the partially
accreted crust is displayed in the lower figure of the movie avail-
able online (Movie 1); the composition of the catalyzed outer

Fig. 3. Abundance of nuclei (N,Z) found in the partially accreted crust
calculated using the Mackie & Baym model, compared to the valley of
recently measured nuclei from AME2016. (N,Z) for the catalyzed outer
crust are shown in blue, (N,Z) of the accreted material part of the crust
are shown in red, and (N,Z) for the originally catalyzed compressed
outer crust are shown in violet.

crust is also presented as a landmark. The accreted material
part is seen to evolve from low to high density (left to right),
thus invading the partially accreted crust until it dominates at
�P = 1032 dyn cm�2. Thermal and transport properties of the
crust depend on the crust composition. For example, the melting
temperature and shear modulus are both proportional to Z2/A1/3

cell
(see Chamel & Haensel 2008); this quantity is presented as a
function of the pressure in Fig. 4. The melting temperature in
the fully accreted crust is much lower than that of the originally
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• Experimental determination of the binding energy of nuclei 
Atomic Mass Evaluation 2020 • Suleiman et al.2022



• NS mater modelling 
• Nuclei - outer crust - up to density  ( ), pressure 

 ( )- experimentally available (measured nuclei). 
Mass , thickness .  

• Inner part of the outer crust, inner crust, - based on the theory of dense matter and 
extrapolation of nuclear properties measurements 

• Core EOS 
- RMF - relativistic mean-field theory 
- Skyrme density functionals 
- Ab initio models 

ρ ∼ 1011 g/cm3 ∼ 0.1 MeV/fm3

P ∼ 1029 erg/cm3 ∼ 10−4 MeV/fm3

ΔM < 10−5M⊙ ΔR ∼ 400 m



Neutron star - EOS

the speed of sound must not exceed c,

vs = (dP/dρ)1/2 ≤ c . (3)

The above condition is usually interpreted as equivalent to a more fundamental condition of
causality (for a detailed discussion, see [7]). One can easily construct so called causal limit
(CL) equation of state, matched smoothly to another EOS at the point (ρm, Pm) and which is
maximally stiff, vs = c for larger density,

P
(CL)

= Pm + (ρ− ρm)c
2 for ρ > ρm . (4)

A true EOS(ρ > ρ0) is a line in the P − ρ plane. Our ignorance implies that there are many
proposed theoretical EOS satisfying necessary conditions {Mmax[EOS] > 2 M!}∧{vs ≤ c} and
used as ”the EOS”. They span over a characteristic quasi-triangular region in the P − ρ plane,
similar to that shown in the left panel of Fig. 2.

Figure 2. (Color online) Left panel: A set of the high-density EOS from the families N (EOS.N), H
(EOS.NH), and Q (EOS.BQ), in the P − ρ plane, for ρ > 7 × 1014 g cm−3.(a) Dotted line CL: causal
limit EOS of the form P = (ρ − ρ1)c2, where ρ1 = 5 × 1014 g cm−3. It crosses each of the considered
EOS at some point (ρm, Pm) such that ρm = ρ1 + Pm/c2; (b) Dotted line FFG: EOS of a free Fermi gas
of neutrons. (c) Asterisk on an EOS indicates the point beyond which EOS is non-causal (vs > c); (d)
We matched to the APR EOS a CL.EOS starting at the asterisk and denoted by a dot-dash line; the
segment of the APR EOS above dot-dash line has to be rejected as non-causal; (e) The constant pressure
segments in the quark part of the EOS.BQ correspond to the 1st order phase transitions, associated with
a density jump.
Right panel: Mass density ρ = E/c2 vs. baryon density nb for NS matter. Relation ρ = ρ(nb) deviates
from linearity for nb > 0.3 fm−3. Nonlinearity grows with increasing nb and is EOS-dependent. For
nb < 0.2 fm−3 linear approximation ρ ≈ nbmn (where mn is neutron mass) is valid.

4. Absolute upper bounds on Mmax

In view of the uncertainties in the theoretical EOS at supra-nuclear densities, it is of interest
to derive an absolute upper bound on Mmax, based on a fundamental physical argument. It is
clear that CL.EOS, Eq. (4), will maximize Mmax for NS models with ”known envelope” ρ < ρm
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Thermodynamical quantities: pressure , mass-energy density , baryon number density P ρ n

Haensel et al.  JoP (2016)Maximum pressure ∼ 1036 erg/cm3 ≃ 624 MeV/fm3 Maximum density ∼ 2 1015 g/cm3 ≃ 1122 Mev/fm3



Stiffness and mass-radius relation
Stiffness: 

            

• Stiff EOS  - large maximum mass  

• repulsion between nucleons necessary to reach large masses 

• Fermi gas of neutrons -  

   Softening of the EOS: 

• weak repulsive forces between nucleons 

• phase transitions due to the appearance of hyperons, quarks. 
 

v =
dP
dρ

Γ =
d logP
d logn

Mmax ≃ 0.7 M⊙

Stiff and soft EOS                   density in the center of NS

Morgane Fortin



Hyperon softening and NS radius
M. Fortin et al.: Hyperon cores and neutron star radii

Table 1. Equations of state. For EOS.Nref (upper part) we selected three widely used EOS, which produce standard values of NS parameters.

EOS Theory Reference
APR Variational, infinite chain summations Akmal et al. (1998)
DH Energy-density functional, Skyrme type Douchin & Haensel (2001)

BSk20 Energy-density functional, Skyrme type Fantina et al. (2013)
BM165 RMF, constant couplings, SU(6) Bednarek et al. (2012)
DS08 RMF, constant couplings, SU(6) Dexheimer & Schramm (2008)

GM1Z0 RMF, constant couplings, SU(6) broken Weissenborn et al. (2012)
M.CQMCC RMF, constant couplings, SU(3) Miyatsu et al. (2013)
SA.BSR2 RMF, constant couplings, SU(6) Sulaksono & Agrawal (2012)
SA.TM1 RMF, constant couplings, SU(6) broken Sulaksono & Agrawal (2012)
G.TM1 RMF, constant couplings, SU(6) broken Gusakov et al. (2014)

M.TM1C RMF, constant couplings, SU(3) Miyatsu et al. (2013)
SA.NL3 RMF, constant couplings, SU(6) Sulaksono & Agrawal (2012)
M.NL3B RMF, constant couplings, SU(6) Miyatsu et al. (2013)
M.GM1C RMF, constant couplings, SU(3) Miyatsu et al. (2013)
SA.GM1 RMF, constant couplings, SU(6) Sulaksono & Agrawal (2012)

UU1 RMF, density-dependent couplings, SU(6) Uechi & Uechi (2009)
UU2 RMF, density-dependent couplings, SU(6) Uechi & Uechi (2009)

Notes. The lower part of the table contains our EOS.H set. For further explanation, see the text.

respectively. Results are collected in the Appendix Table A.1.
In the following P33 refers to the pressure P in the units of
1033 dyn cm−2. We notice a striking difference between EOS.H
and EOS.Nref. The values of P(N)

33 (n0) are concentrated within

3.3 ± 0.3, while the values of P(H)
33 (n0) are significantly higher,

within 8 ± 2.5.
Hebeler et al. (2013) argue that the EOS of pure neutron mat-

ter at nb ≤ n0 can be reliably calculated using the up-to-date
many-body theory of nuclear matter. Their results are in remark-
able agreement with those by Gandolfi et al. (2012) using an ap-
proach completely different from that adopted by Hebeler et al.
(2013). At this density, NS matter in beta equilibrium is expected
to be somewhat softer than the pure neutron matter. Hebeler et al.
(2013) calculate the effect of the presence of an admixture of
protons and electrons in beta equilibrium on the EOS, combin-
ing the EOS of neutron matter and available semi-empirical in-
formation about nuclear symmetry energy and its density depen-
dence (slope parameter Ls). Interpolating between the values in
their Table 5, we conclude that Hebeler et al. (2013) provide the
following constraint on the pressure of NS matter at n0 :

2.7 < P33(n0) < 4.4. (2)

This constraint is satisfied by EOS.Nref. On the contrary, it is
badly violated by EOS from EOS.H, which give P33(n0) sig-
nificantly higher than the upper bound in Eq. (2). Before con-
sidering consequences of the “overpressure” of the nucleon
(pre-hyperon) segment of EOS.H for NS radii, we discuss two
different parametrizations of NS models.

4. Two densities and two parametrizations
of neutron star models

When investigating the EOS of NS matter, we have to consider
two distinct densities, ρ = E/c2 and nb (Sect. 2). While ρ is the
relevant quantity for GTR calculations of the NS structure, it is
nb that is associated with an average distance between baryons
(treated as point-like objects), rb ∝ n−1/3

b . Therefore, knowing nb,
we can compare an actual rb with the average distance between
nucleons in nuclear matter at normal nuclear density, r0 , rb/r0 =
n −1/3. At subnuclear densities, ρ of NS matter can be very well

Fig. 1. Mass density ρ = E/c2 vs. baryon density nb for NS matter for
the set of EOS presented in Figs. 2−4. Dotted segments correspond to
the central densities of NS models, which are unstable with respect
to radial oscillations. Relation ρ = ρ(nb) deviates from linearity for
nb > 0.3 fm−3. Non-linearity grows with increasing nb and is EOS-
dependent. For nb ! 0.2 fm−3, the linear approximation ρ ≈ nbmn

(where mn is neutron mass) is valid. (Colour online.)

approximated by nbmn, where mn is neutron rest mass. However,
at supranuclear densities ρ grows non-linearly with nb. This non-
linear dependence is model dependent, see Fig. 1, and actually
determines the EOS, see Eq. (1).

In Fig. 2 we plot the relations between M and the central
baryon density nc for non-rotating NS models. Several conclu-
sions result from this figure. First, the central density in a 2 M%
NS is typically nc = 4−5, so that at the star’s centre rb/r0 ≈ 0.6.
Second, the N segment of EOS.H, corresponding to 1 < n < 2,
is so much stiffer than a similar segment of the EOS.Nref, that
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Fig. 2. Gravitational mass M vs. central baryon density nc for non-
rotating NS models based on the sets EOS.H (blue lines – H) and
EOS.Nref (black lines – Nref). In Nref : A is APR, B is BSk20, C is
DH; in H: a is SA.BSR2, b indicates BM165, c indicates GM1Z0, d
is UU1, e is G.TM1C. EOS labels from Table 1. Solid lines: stable
NS configurations. Dotted lines: configurations unstable with respect
to small radial perturbations. Vertical lines crossing the M(nc) curves
indicate configurations with nc/n0 = 2, 3, . . . . Hatched strip correspond
to M = 1.4±0.05 M!, and the observational constraints for J1614-2230
and J0348+0432 are marked in blue and magenta, respectively (1-σ er-
rors). (Colour online.)
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M(H)(nc = 2) ∼ 2 M(N)(nc = 2). In other words, to yield
Mmax > 2.0 M! despite the hyperon softening, the pre-hyperon
(nucleon) segment 1 < n < 2 of EOS.H has to be very stiff.

Figure 3 shows the M(ρc) curves. The ρc in 2 M! stars can
be as high as 6−7, significantly larger than the corresponding
values of nc. For the Mmax configurations, the difference is even

Fig. 4. Gravitational mass M vs. circumferential radius R for non-
rotating NS models. For the labels, see details in the caption of Fig. 2.
(Colour online.)

larger. However, it is nc and not ρc that determines the mean
inter-baryon distance at the centre of the star.

The value of nc for 2 M! stars can be used to evaluate the im-
portance of relativistic effects in the relevant many-body prob-
lem. The number density ni of baryon species i = n, p,Λ, . . .
with a mass mi can be related to their mean velocity 〈vi〉. In
the free Fermi gas approximation, 〈vi〉 = 0.26c (xin)1/3 (mn/mi),
where xi = ni/nb and mn is the neutron mass. At the centre of a
2 M! star we expect n ∼ 5 so that 〈vi〉 ∼ 0.4c (xi)1/3 (mn/mi).
The multi-component character of dense baryon matter implies
lower 〈vi〉 as compared to a pure neutron matter case and, con-
sequently, smaller relativistic effects in the many-body system,
as stressed in the classical paper of Bethe & Johnson (1974) to
justify the use of a non-relativistic many-body theory of dense
matter. Therefore, we might expect that not only RMF but also
some non-relativistic models, consistent with semi-empirical nu-
clear and hypernuclear matter constraints, could yield 2 M! stars
with hyperonic cores. However, as far as we know, there is only
one such a non-relativistic dense matter model satisfying these
conditions (Yamamoto et al. 2014).

A very recent calculation of Katayama & Saito (2014) is
performed using a relativistic formulation of G-matrix theory
(Dirac-Brueckner-Hartree-Fock approximation). Some models
from this work give Mmax > 2 M!, but they do not satisfacto-
rily reproduce the semi-empirical parameters of nuclear matter
(see Table 1 of Katayama & Saito 2014).

5. Radii of neutron stars with hyperon cores

The radius R is a measurable NS parameter and therefore large
radii of NS with hyperon cores could be subject to an observa-
tional test. The M(R) lines for selected EOS from EOS.H are
plotted in Fig. 4. By construction, selected EOS.H include those
producing an envelope of a complete H-bundle of M(R) curves.

In the mass range 1 < M/M! < 1.6, the H-bundle is cen-
tred around ∼14.2 km. There is a wide >1 km gap between
the H and Nref bundles in this mass range. More specifically,
we find a lower bound R(H) > 13 km in the considered mass
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where xi = ni/nb and mn is the neutron mass. At the centre of a
2 M! star we expect n ∼ 5 so that 〈vi〉 ∼ 0.4c (xi)1/3 (mn/mi).
The multi-component character of dense baryon matter implies
lower 〈vi〉 as compared to a pure neutron matter case and, con-
sequently, smaller relativistic effects in the many-body system,
as stressed in the classical paper of Bethe & Johnson (1974) to
justify the use of a non-relativistic many-body theory of dense
matter. Therefore, we might expect that not only RMF but also
some non-relativistic models, consistent with semi-empirical nu-
clear and hypernuclear matter constraints, could yield 2 M! stars
with hyperonic cores. However, as far as we know, there is only
one such a non-relativistic dense matter model satisfying these
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performed using a relativistic formulation of G-matrix theory
(Dirac-Brueckner-Hartree-Fock approximation). Some models
from this work give Mmax > 2 M!, but they do not satisfacto-
rily reproduce the semi-empirical parameters of nuclear matter
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radii of NS with hyperon cores could be subject to an observa-
tional test. The M(R) lines for selected EOS from EOS.H are
plotted in Fig. 4. By construction, selected EOS.H include those
producing an envelope of a complete H-bundle of M(R) curves.

In the mass range 1 < M/M! < 1.6, the H-bundle is cen-
tred around ∼14.2 km. There is a wide >1 km gap between
the H and Nref bundles in this mass range. More specifically,
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Radii of canonical NS (  ) are largely determined by the EOS  at  
Maximum mass depends on the EOS at  . 
To reach high maximum mass softening at high densities ( ) 
has to be compensated by stiff Eos at .

M = 1.4 M⊙ ρ0 − 3ρ0
ρ > 3ρ0

ρ > 3ρ0
ρ ∼ 2ρ0
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Binary Systems Parameters

• Orbital (binary) period  

• The orbital eccentricity  

• The projected semi major axis  

• The longitude of periastron  

• The time of periastron passage 
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Figure 3. Binary orbit.

Hence, the relative radial velocity along the projection of the line of
sight into the orbital plane is given by

vr = [vx cos (π/2 − ω) + vy sin (π/2 − ω)]

=

(

G M

h

)

(sin θ sin ω + (cos θ + e) cos ω)

=

(

G M

h

)

vrs . (6)

For ω = 90◦ the observed velocity will be antisymmetric (odd) as
a function of θ or time-measured from periastron. Similarly, for
ω = 0◦ the observed velocity will be symmetric (even). For other
intermediate values ofω, the observed velocity will be a combination
of antisymmetric and symmetric parts in the ratio of sin ω/cos ω.
A plot of the antisymmetric versus the symmetric part will be an
ellipse and the parameters of the ellipse will provide preliminary
values of the orbital parameters.

As a cross-check, we apply this method on simulated Keplerian
orbits. We simulate vrs for trial value of e, ω and To. Corresponding
to each vrs value at a particular orbital phase (φ), we determine
the vrs at conjugate phase (2π − φ), using Lagrange’s interpolation
method with three points. The even and odd parts are defined as
follows:

veven
rs

= [vrs (φ) + vrs (2π − φ)]/2, (7)

vodd
rs

= [vrs (φ) − vrs (2π − φ)]/2. (8)

A plot of vodd
rs

versus veven
rs

should be an ellipse, for a correct choice
of To (Fig. 4). The ratio of the major-axis and minor-axis of the
ellipse gives tan ω, and the shift of the origin of the ellipse gives e.
Using the method illustrated in Appendix A, we fit an ellipse to the
vrs

odd versus vrs
even data. ω and e are recovered from the parameters

of the best-fitting ellipse.
Since vrs and the observed pulsar period (Pobs) will have similar

modulations, we construct antisymmetric and symmetric parts from
the Pobs. Corresponding to each Pobs value at a particular orbital
phase (φ), we determine Pobs at a conjugate phase (2π − φ) using
Lagrange’s interpolation method with three points. The even and
the odd parts are defined as follows:

Peven
obs = [Pobs(φ) + Pobs(2π − φ)]/2, (9)
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rs
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(generated for a simulated Keplerian orbit with
e = 0.5, ω = 60◦) and the fitted ellipse for a correct choice of To.

Podd
obs = [Pobs(φ) − Pobs(2π − φ)]/2. (10)

The plot of Podd
obs versus Peven

obs should be an ellipse for correct choice of
the periastron passage (To). We vary To, corresponding Podd

obs versus
Peven

obs plots are generated, and fit an ellipse to the Podd
obs versus Peven

obs

plot (Appendix A). The left-hand panel of Fig. 5 is the plot of
Podd

obs versus Peven
obs for real data of 47 tuc T with an arbitrary choice

of To. The right-hand panel of Fig. 5 is the plot of Podd
obs versus

Peven
obs for real data of 47 tuc T with optimal choice of To(To for

which χ
2 is minimum after ellipse fitting). Preliminary values of e

and ω are obtained from the parameters of the best-fitting ellipse
(Appendix A).

3 R E F I N E M E N T O F T H E D E T E R M I N E D
O R B I TA L PA R A M E T E R S

In this section, we take the preliminary determined orbital param-
eters as the initial guess in a linear least-squares fit. This is now
computationally efficient since only a small range of the parame-
ters, near the first guess values, has to be searched. Pobs is determined
by the relation

Pobs = Po

(

1 +
vl

c

)

, (11)
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• the rate of orbital decay due to gravitational radiation  

• the relativistic advance of periastron (the relativistic precession of the orbit)  

• the time dilation and gravitational redshift parameter    

• the Shapiro parameter  (range) 

• the Shapiro parameter  (shape)   
   a delay that is added to the pulse arrival times when propagating through 
the curved space-time near the companion

·Pb

·ω

γ

r

s
r, s



NS mass determination

the Shapiro delay related to the motion of the masses
[Eq. (32)] and corrections related to the deflection of the
signal beam in the gravitational field of the companion
[Eqs. (33) and (34)]. Although, as discussed in Sec. V E,
these contributions cannot be tested separately in a simul-
taneous fit, in a phenomenological approach one can still
test for one at a time while keeping the other one fixed. If

we apply the scaling factor qNLO only to the deflection-
related contributions, one finds

qNLO½deflection" ¼ 1.26ð24Þ: ð54Þ

This limit comes solely from the NLO aberration contri-
butions [Eq. (34)], since a rescaling of δΛlen

u is covariant

FIG. 13. Mass-mass diagram for the double pulsar based on GR, for the six PK parameters _ω≡ nbk, γE, _Pb, r, s, Ω
spin
B , and the mass

ratio R. The width of each curve indicates the measurement uncertainty of the corresponding parameter. The seventh PK parameter δθ is
not shown here, since its limits still lie outside the mass ranges shown. For the solid black _ω line, Ið45ÞA ¼ 1.32 is used, which corresponds
to a NS radius of 12 km (cf. Ref. [112]). The inset is an expanded view of the region of principal interest, where only the four best PK
parameters are shown. To illustrate the influence of the LTeffect, we draw in the inset a dashed black _ω0 line where the LT contribution is
ignored [see Eq. (9)]. The gray band indicates the range for the _ω line under the variation of IA, from the causality limit of Ref. [169] (left
border) to a NS radius of 15 km (right border). The conversions between radius and MOI are based on the relation in Ref. [114]. There is
a small IA dependence of the _Pb curves, which is ignored. The intersection of all line pairs is consistent with a small region that
corresponds to the masses of A and B.

M. KRAMER et al. PHYS. REV. X 11, 041050 (2021)
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• the rate of orbital decay due to gravitational radiation  

• the relativistic advance of periastron (the relativistic precession of the orbit)  

• the time dilation and gravitational redshift parameter    

• the Shapiro parameter  (range) 

• the Shapiro parameter  (shape)   
   a delay that is added to the pulse arrival times when propagating through the curved space-time near the companion
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s
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Double Pulsar PSR J0737-3039A/B

• Given the precisely measured Keplerian parameters, the only 
two unknowns are the masses of the pulsar and its companion  

• From the measurement of just two PK parameters (eg.  and ) 
one can solve for the 2 masses and then to find the inclination 
angle 

• If more PK parameters measured - system overdetermined - can 
be used to test theory of gravity 

• Theory of gravity gives the dependence of PK parameters on 
masses  and   

• If two stars (pulsars) observed - additional parameter 

·ω γ

MP MC

R =
MP
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NS mass measurements

• DNS: double neutron star (NS) systems (the symbol * indicates that the 
nature of the companion star is unclear: neutron star or massive white dwarf 
(WD))

• MSP: millisecond pulsars: NSs, not in a DNS, with a rotation period P ≤ 20 
ms (spin frequency f ≥ 50 Hz) (the symbol † indicates that the companion 
star is a main-sequence star, unlike for the other systems for which it is a 
WD) 

• SLOW: slowly rotating NSs (P ≥ 20 ms or f ≤ 50 Hz), not in a DNS system

• X/OPT.: NSs for which the mass was measured using X-ray or optical 
observations (while radio timing was used for the other NSs) 

errorbars -  1σ

Suleiman et al.  PHYSICAL REVIEW C 104, 015801 (2021) 

Data available on the website: https://compose.obspm.fr/resources

https://compose.obspm.fr/resources


NS mass - record holdersMost massive binary pulsars - summary

System mP(M�) mC(M�) Pb (d) Ps (ms) e type discovery
B1913+16 1.44 1.39 0.323 59.0 0.617 NS-NS 1974

J1903+0327 1.67 1.05 95.17 2.15 0.437 NS-MS 2008
J1614-2230 1.908(16) 1.97 0.5 8.7 3.15 1.3 ⇥ 10

�6 NS-WD 2010
J0348+0432 2.01 0.18 0.102 39.1 2 ⇥ 10

�6 NS-WD 2013
J0740+6620 2.17(0.1) 0.26 4.77 2.9 5 ⇥ 10

�6 NS-WD 2019

system type discovery

B1913+16 1.43398(2) 1.42 1.39 0.323 59.0 0.617 NS-NS 1974

J0951+1807 1.64(15) 2.1/1.26 0.16 0.263 3.48 3 10-6 NS-WD 2005/08/16

J1903+0327 1.67(2) 1.74(4) 1.05 95.17 2.15 0.437 NS-MS 2008

J1614-2230 1.908(16) 1.97 0.5 8.7 3.15 1.3 10-6 NS-WD 2010

J0348+0432 1.97(4) 2.01 0.18 0.102 39.1 2 10-6 NS-WD 2013

J0740+6620 2.08(7) 2.14 0.26 4.77 2.9 5 10-6 NS-WD 2019

J0952-0607 2.35(17) 2.35(17) 0.032 0.267 1.41 <4 10-3 BlackWidow 2017

MP(M⊙) MC(M⊙) Pb(d) P(ms) e
MP(M⊙)

discovery



PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star

Roger W. Romani1 , D. Kandel1 , Alexei V. Filippenko2 , Thomas G. Brink2 , and WeiKang Zheng2
1 Department of Physics/KIPAC, Stanford University, Stanford, CA 94305, USA; rwr@astro.stanford.edu

2 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
Received 2022 May 12; revised 2022 June 24; accepted 2022 July 4; published 2022 July 26

Abstract

We describe Keck-telescope spectrophotometry and imaging of the companion of the “black widow” pulsar
PSR J0952−0607, the fastest known spinning neutron star (NS) in the disk of the Milky Way. The companion is
very faint at minimum brightness, presenting observational challenges, but we have measured multicolor light
curves and obtained radial velocities over the illuminated “day” half of the orbit. The model fits indicate system
inclination i= 59°.8± 1°.9 and a pulsar mass MNS= 2.35± 0.17Me, the largest well-measured mass found to
date. Modeling uncertainties are small, since the heating is not extreme; the companion lies well within its Roche
lobe and a simple direct-heating model provides the best fit. If the NS started at a typical pulsar birth mass, nearly
1Me has been accreted; this may be connected with the especially low intrinsic dipole surface field, estimated at
6× 107 G. Joined with reanalysis of other black widow and redback pulsars, we find that the minimum value for
the maximum NS mass is >M M2.19max  (2.09Me) at 1σ (3σ) confidence. This is∼ 0.15Me heavier than the
lower limit on Mmax implied by the white dwarf–pulsar binaries measured via radio Shapiro-delay techniques.

Unified Astronomy Thesaurus concepts: Pulsars (1306)
Supporting material: data behind figure

1. Introduction

Pulsar PSR J0952−0607 (hereafter J0952) was discovered
by Bassa et al. (2017) with a spin period of Ps= 1.41 ms,
making it the fastest-spinning pulsar in the disk of the Milky
Way. It is a “black widow” (BW) pulsar with a low-mass
(substellar) companion being irradiated and evaporated by the
pulsar luminosity. Nieder et al. (2019) subsequently detected it
as a gamma-ray pulsar, and obtained additional radio timing
and optical photometry that allowed initial fits for the system
properties. In particular, they measure a low period derivative

= ´ - -P 4.6 10 s sobs
21 1 , which places an upper limit on the

surface dipole field of 8.2× 107 G, among the 15 lowest-
known pulsar magnetic fields (B), even before the Shklovskii
(1970) correction. Since in addition their optical photometry
suggests a large (>5 kpc) distance, and timing data gave a best-
fit (albeit low-significance) proper motion of ∼10 mas yr−1, the
correction to find the intrinsic P ,

m= - ´ -P P P d2.43 10 , 1obs
21

mas yr
2

kpc ( ) 

may be substantial, reducing P to 2.0× 10−21 s s−1 and thus B
to Bi≈ 6.1× 107 G. Not all pulsars have a proper motion
allowing an intrinsic Bi estimate, but only 10 pulsars have a
lower Bi in the ATNF catalog3 (Manchester et al. 2005).

The measurement of high neutron star (NS) masses in some
white dwarf (WD)–NS millisecond-pulsar binaries, via radio-
measured Shapiro delay, has been very influential in driving
thinking about the dense-matter equation of state. Two systems
have best-estimate masses barely exceeding 2.0Me: J0348
+0432 at 2.01± 0.04Me (Antoniadis et al. 2013) and

PSR J0740+6620 at 2.08± 0.07Me (Fonseca et al. 2021),
both 1σ uncertainties. However, the maximum mass that an NS
can reach must depend on its binary evolutionary history. For
example, inspection of the double NS–NS binaries alone would
lead one to conclude that the typical NS mass is∼1.35Me,
with a maximum of∼1.45Me; the millisecond pulsars in these
systems are only mildly recycled, with spin periods of tens of
milliseconds and moderate magnetic fields. One must therefore
examine a variety of pulsar binary classes in a quest to find the
most massive NSs.
It has long been argued (e.g., Bisnovatyi-Kogan & Komberg

1974; Romani 1990) that binary accretion may reduce young
pulsar terraGauss fields to millisecond-pulsar values. While the
mechanism is unclear, ranging from simple burial to heating-driven
ohmic decay (see Mukherjee 2017 for a review), it seems likely
that the amount of mass accretion or its duration play a role in
controlling the degree of field reduction. Thus, it is interesting to
measure the masses of millisecond pulsars, and the fastest-spinning
lowest-field pulsars are good candidates for substantial accretion
and high NS mass. Since evolution is driven by angular
momentum loss and irradiation bloating, rather than by nuclear
evolution, long periods of sub-Eddington rate accretion are
expected for the progenitors of “spider” (BW and “redback”
(RB) millisecond-pulsar) binaries before the start of the pulsar-
driven evaporation phase; these short-period binaries may host
very massive NSs.
Thus, J0952 is a particularly attractive candidate for further

investigation. However, Nieder et al. (2019) state, “Unfortu-
nately, the optical counterpart of PSR J0952−0607 is too faint
(r≈ 23 at quadrature when the radial velocity is highest) for
spectroscopic radial-velocity measurements to be feasible even
with 10 m class ‘telescopes.’” This is nearly true, but the
exceptional Ps and B inspired our intensive campaign of J0952
Keck LRIS imaging and spectroscopy. Modeling these data, we
find that the NS mass is indeed the largest well-measured value
to date. Combining this mass with those from new modeling of
other spider binaries, we show that these objects put a strong

The Astrophysical Journal Letters, 934:L17 (6pp), 2022 August 1 https://doi.org/10.3847/2041-8213/ac8007
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Abstract

We describe Keck-telescope spectrophotometry and imaging of the companion of the “black widow” pulsar
PSR J0952−0607, the fastest known spinning neutron star (NS) in the disk of the Milky Way. The companion is
very faint at minimum brightness, presenting observational challenges, but we have measured multicolor light
curves and obtained radial velocities over the illuminated “day” half of the orbit. The model fits indicate system
inclination i= 59°.8± 1°.9 and a pulsar mass MNS= 2.35± 0.17Me, the largest well-measured mass found to
date. Modeling uncertainties are small, since the heating is not extreme; the companion lies well within its Roche
lobe and a simple direct-heating model provides the best fit. If the NS started at a typical pulsar birth mass, nearly
1Me has been accreted; this may be connected with the especially low intrinsic dipole surface field, estimated at
6× 107 G. Joined with reanalysis of other black widow and redback pulsars, we find that the minimum value for
the maximum NS mass is >M M2.19max  (2.09Me) at 1σ (3σ) confidence. This is∼ 0.15Me heavier than the
lower limit on Mmax implied by the white dwarf–pulsar binaries measured via radio Shapiro-delay techniques.
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1. Introduction

Pulsar PSR J0952−0607 (hereafter J0952) was discovered
by Bassa et al. (2017) with a spin period of Ps= 1.41 ms,
making it the fastest-spinning pulsar in the disk of the Milky
Way. It is a “black widow” (BW) pulsar with a low-mass
(substellar) companion being irradiated and evaporated by the
pulsar luminosity. Nieder et al. (2019) subsequently detected it
as a gamma-ray pulsar, and obtained additional radio timing
and optical photometry that allowed initial fits for the system
properties. In particular, they measure a low period derivative
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surface dipole field of 8.2× 107 G, among the 15 lowest-
known pulsar magnetic fields (B), even before the Shklovskii
(1970) correction. Since in addition their optical photometry
suggests a large (>5 kpc) distance, and timing data gave a best-
fit (albeit low-significance) proper motion of ∼10 mas yr−1, the
correction to find the intrinsic P ,

m= - ´ -P P P d2.43 10 , 1obs
21

mas yr
2

kpc ( ) 

may be substantial, reducing P to 2.0× 10−21 s s−1 and thus B
to Bi≈ 6.1× 107 G. Not all pulsars have a proper motion
allowing an intrinsic Bi estimate, but only 10 pulsars have a
lower Bi in the ATNF catalog3 (Manchester et al. 2005).

The measurement of high neutron star (NS) masses in some
white dwarf (WD)–NS millisecond-pulsar binaries, via radio-
measured Shapiro delay, has been very influential in driving
thinking about the dense-matter equation of state. Two systems
have best-estimate masses barely exceeding 2.0Me: J0348
+0432 at 2.01± 0.04Me (Antoniadis et al. 2013) and

PSR J0740+6620 at 2.08± 0.07Me (Fonseca et al. 2021),
both 1σ uncertainties. However, the maximum mass that an NS
can reach must depend on its binary evolutionary history. For
example, inspection of the double NS–NS binaries alone would
lead one to conclude that the typical NS mass is∼1.35Me,
with a maximum of∼1.45Me; the millisecond pulsars in these
systems are only mildly recycled, with spin periods of tens of
milliseconds and moderate magnetic fields. One must therefore
examine a variety of pulsar binary classes in a quest to find the
most massive NSs.
It has long been argued (e.g., Bisnovatyi-Kogan & Komberg

1974; Romani 1990) that binary accretion may reduce young
pulsar terraGauss fields to millisecond-pulsar values. While the
mechanism is unclear, ranging from simple burial to heating-driven
ohmic decay (see Mukherjee 2017 for a review), it seems likely
that the amount of mass accretion or its duration play a role in
controlling the degree of field reduction. Thus, it is interesting to
measure the masses of millisecond pulsars, and the fastest-spinning
lowest-field pulsars are good candidates for substantial accretion
and high NS mass. Since evolution is driven by angular
momentum loss and irradiation bloating, rather than by nuclear
evolution, long periods of sub-Eddington rate accretion are
expected for the progenitors of “spider” (BW and “redback”
(RB) millisecond-pulsar) binaries before the start of the pulsar-
driven evaporation phase; these short-period binaries may host
very massive NSs.
Thus, J0952 is a particularly attractive candidate for further

investigation. However, Nieder et al. (2019) state, “Unfortu-
nately, the optical counterpart of PSR J0952−0607 is too faint
(r≈ 23 at quadrature when the radial velocity is highest) for
spectroscopic radial-velocity measurements to be feasible even
with 10 m class ‘telescopes.’” This is nearly true, but the
exceptional Ps and B inspired our intensive campaign of J0952
Keck LRIS imaging and spectroscopy. Modeling these data, we
find that the NS mass is indeed the largest well-measured value
to date. Combining this mass with those from new modeling of
other spider binaries, we show that these objects put a strong
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Radius measurements
Radius measurements: 
- x-ray observations 
- Neutron-star Interior Composition Explorer NICER 
- Two object measured  
- Analysis based on the fitting X-ray emission to the model with 
 two or three emitting spots on the surface of neutron star

The results are shown in Figure 10. The minimum value of the
bolometric χ2/dof is 59.6/43, which has a probability of
0.0473, indicating that this 64-phase model also provides an
acceptable description of the 64-phase bolometric waveform
data. When the predictions of this best-fit model for the energy-
resolved waveform with 64 phase bins are compared with the
64-bin energy-resolved NICER waveform data, the resulting
χ2/dof is 16347.5/16360, which has a probability of 0.526,
again much higher than the probability that we found when we
divided the data into only 32 phase bins, and indicating that this

energy-resolved waveform model provides an acceptable
description of the energy-resolved NICER waveform data with
64 phase bins.
These results indicate that our best-fit models with two and

three oval spots provide good descriptions of the NICER
waveform data at high phase resolutions, and that the radius
and mass estimates inferred from them are therefore credible.
Why the bolometric waveforms given by the models that best
fit the 32- and 64-phase energy-resolved NICER waveform data
differ from the 32-phase bolometric waveforms constructed

Figure 7. Comparison of the joint posterior probability density distributions for M and Re given by the best fits of the waveform model with two (panel (a)) and three
(panel (b)) uniform-temperature oval spots. The inner contour shown in each panel contains 68.3% of the posterior probability, whereas the outer contour contains
95.4%. The color indicates the credibility in standard deviations of each point in the posterior probability density distribution. Again, the agreement of the distributions
given by the two models is excellent.

Figure 8. Comparison of the bolometric waveforms given by the best-fit waveform models with two (panel (a)) and three (panel (b)) oval spots. The solid curves show
the full waveforms; the dashed curves show the contributions to the full waveform made by the individual hot spots. The components that generate the full waveforms
are very similar for the two models.
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XMM-Newton (Bogdanov & Grindlay 2009). Although the
XMM-Newton EPICMOS1/2 observations have substantially
fewer source counts, they have a much lower background in the
point-source spatial extraction region compared to the non-
imaging NICER data, which means that to first order all of the
counts detected by XMM-Newton come from the star rather
than from unassociated sources. If the phase-integrated data
from XMM-Newton are fit using a two-temperature non-
magnetic hydrogen atmosphere model (as in Bogdanov &
Grindlay 2009) and the predictions of the model are folded
through the NICER response matrix, then we obtain an estimate
for the total number of NICER counts from the star and the
spectral shape that we expect to see in NICER. This predicted
spectral flux can be compared with the total spectral flux
expected from all the hot spots in our best-fit models of the
pulse waveform emission. Figure 12 shows this comparison for
our models with two oval spots and three oval spots. In both
cases, the combined spectral flux expected from the hot spots at
low photon energies falls short of the spectral flux predicted by
the XMM-Newton observations.

A first thought would be that the missing emission might be
unpulsed thermal emission from a substantial fraction of the

stellar surface. There are, however, several serious difficulties
with such an interpretation. First, the emission would have to be
almost exactly axisymmetric around the stellar rotation axis in
order to avoid generating detectable pulsed emission. This forces
one to consider emission patterns that are highly tuned: filled
circular emitting regions around one or both rotation poles,
annular emitting regions centered around one or both rotation
axes, or some combination of these would be required to avoid
producing detectable flux modulation. Second, if the emission is
thermal, the total area of the axisymmetric emitting region(s)
would have to be a very small fraction of the stellar surface.
We illustrate these difficulties by an example. In order to make

up the observed deficit in the flux at low energies and not produce
detectable modulation, a circular spot centered on the north
rotational pole (the pole nearer the observer), would have to have
an angular radius of just 0.075 rad, assuming thermal emission at
the best-fit effective temperature of kTeff≈0.075 keV. Such a
spot would also have to be very nearly circular and centered on
the north rotational pole: a deviation of more than ∼0.01 rad
would cause a flux modulation that would be inconsistent with the
observed waveform. Because of its smaller projected area, a
circular spot centered on the south rotational pole would have to

Figure 11. Locations, shapes, and sizes of the hot spots in the best-fit waveform models with two oval spots (panels (a) and (b)) (see Table 7) and three oval spots
(panels (c) and (d)) (see Table 8). Panels (a) and (c) show equal-area projections, centered on the rotational equator. Panels (b) and (d) are views from the south pole.
The cooler main spot is indicated by yellow, the hotter main spot is indicated by red, and in the three-spot model, the hottest spot is indicated by blue. For both fits, the
horizontal line shows the inferred colatitude of the observer. Clearly, both spots in the model with two oval spots and the two main spots in the model with three oval
spots are very similar in location, size, and shape; the third spot in the three-spot model has a very small area and makes only a minor contribution to the waveform.
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Abstract

Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists because their
attributes can be used to determine the properties of the dense matter in their cores. One of the most informative
approaches for determining the equation of state (EoS) of this dense matter is to measure both a star’s equatorial
circumferential radius Re and its gravitational mass M. Here we report estimates of the mass and radius of the
isolated 205.53 Hz millisecond pulsar PSRJ0030+0451 obtained using a Bayesian inference approach to analyze
its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition
Explorer (NICER). This approach is thought to be less subject to systematic errors than other approaches for
estimating neutron star radii. We explored a variety of emission patterns on the stellar surface. Our best-fit model
has three oval, uniform-temperature emitting spots and provides an excellent description of the pulse waveform
observed using NICER. The radius and mass estimates given by this model are = -

+R 13.02e 1.06
1.24 km and

= -
+M M1.44 0.14
0.15 (68%). The independent analysis reported in the companion paper by Riley et al. explores

different emitting spot models, but finds spot shapes and locations and estimates of Re and M that are consistent
with those found in this work. We show that our measurements of Re and M for PSRJ0030+0451 improve the
astrophysical constraints on the EoS of cold, catalyzed matter above nuclear saturation density.

Unified Astronomy Thesaurus concepts: X-ray sources (1822); Millisecond pulsars (1062); Neutron stars (1108);
Neutron star cores (1107)

1. Introduction

A key current goal of nuclear physics is to understand the
properties of cold catalyzed matter above the saturation density
of nuclear matter. Matter at these densities cannot be studied in
terrestrial laboratories. Hence observations of neutron stars—
which contain large quantities of such matter—play a key role
(see, e.g., Lattimer & Prakash 2007). Over the last few years,
the discovery of several high-mass neutron stars (Demorest
et al. 2010; Antoniadis et al. 2013; Arzoumanian et al. 2018a;
Cromartie et al. 2019) and measurement of the binary tidal
deformability during a neutron star merger (Abbott et al.
2017, 2018; De et al. 2018) have advanced our knowledge of
the properties of cold dense matter, but precise and reliable
measurements of neutron star radii would significantly improve
our understanding.

Various radius estimates have been made using models of
the X-ray emission from quiescent neutron stars (see Steiner
et al. 2018 for a recent summary), from neutron stars during
thermonuclear X-ray bursts (see Steiner et al. 2010; Özel et al.
2016; and Nättilä et al. 2017 for different perspectives), and
from accretion-powered millisecond pulsars (see Salmi et al.
2018), with inferred radii typically ranging from ∼10km to
∼14km, consistent with most theoretical predictions. How-
ever, these estimates are susceptible to significant systematic
errors, in the sense that a model could provide a formally good
fit to the data but yield a credible interval for the radius that
strongly excludes the true value (Miller 2013; Miller &
Lamb 2016).
In contrast, analyses of the soft X-ray pulse waveforms

observed using the Neutron Star Interior Composition Explorer
(NICER) are expected to be less susceptible to systematic
errors. Analyses of synthetic waveforms carried out prior to the
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Moment of inertia
- Moment of inertia I not measured yet 

- Some limits on I available 

- Possibility of I measurements for the binary systems 
 - relativistic spin-orbit contribution to  ·ω

The 3PN corrections to k are calculated inRefs. [106,107].
They are of the order of β2O ≈ 4 × 10−6 times the 2PN terms
and, therefore, absolutely negligible.

2. Spin-orbit contribution and equation of state

So far, we have ignored the influence of spin, i.e., the
proper rotations of A and B, on the orbital dynamics.
Several effects related to spin can lead to significant modi-
fications of the equations of motion of a binary system, in
particular, the relativistic spin-orbit and spin-spin coupling
and the rotationally inducedmass quadrupolemoments [37].
For the analysis in this paper, only the coupling between the
spin of A and the orbital motion is of any relevance (the spin
of B is about 135 times smaller). It is numerically of 2PN
order [33,108,109], which is typical for binary pulsars in
relativistic double-NS systems [101]. Furthermore, since the
spin of A is practically parallel to the orbital angular
momentum (see Sec. II), there is only a contribution to
the precession of the periastron that is of relevance here. We
refer the reader to Refs. [33,110] for more details.
In order to incorporate spin-orbit coupling in our

analysis, Eq. (9) needs to be extended by the Lense-
Thirring (LT) term, i.e.,

k ¼ k1PN þ k2PN þ kLT;A; ð13Þ

where within GR the LT contribution is given by
[36,37,111]

kLT;A ¼ −
3β3OβSA
1 − e2T

gkSA ; ð14Þ

with

βSA ¼ 2πν
cIA
Gm2

A
; ð15Þ

gkSA ¼
XAð1þ 1

3XAÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2T

p : ð16Þ

Apart from the MOI IA, all quantities in the above equations
are known with high precision. IA depends on the EOS for
NSmatter,which is still afflictedby considerable uncertainty.
Consequently, there is a range in the prediction for kLT;A.
From Eq. (14), one finds the numerical expression

_ωLT;A ≡ nbkLT;A ≃ −3.77 × 10−4 × Ið45ÞA deg yr−1; ð17Þ

where Ið45ÞA ≡ IA=ð1045 g cm2Þ. Using the multimessenger
constraints on the radius that can be inferred from Ref. [112]
(probability distribution function of case F in their Fig. 1)
[113] in combination with the radius-MOI relation for A
given in Ref. [114], we find a range of Ið45ÞA ≈ 1.15–1.48
(95% confidence). [115] Alternatively, Eq. (17) can be used
to infer limits for the MOI of A purely from the timing

observations of the double pulsar, if combinedwith two other
suitable PK parameters [33,110,119]. A corresponding
analysis is given in Sec. VI B 3.

3. Proper motion contributions

The proper motion of a binary pulsar leads to a change in
its orientation with respect to the observer on Earth. Such a
change leads to an apparent change in the longitude of
periastron ω and the orbital inclination i [120,121]. The
change in ω leads to a proper motion related offset _ωpm

between the intrinsic and the observed advance of perias-
tron. Using the proper motion and orbital inclination from
Table IV, in combination with the longitude of the ascend-
ing node obtained from scintillation measurements [92],
one finds _ωpm ≈ −4 × 10−7 deg yr−1 (see also Ref. [110]).
This is about a factor of 30 smaller than the current
measurement error for _ω (see Table IV) and can, therefore,
be ignored. As a consequence, there is no need to
distinguish between the observed and the intrinsic _ω.
The change in the orbital inclination enters the timing

model through a temporal change in the projected semi-
major axis of the pulsar orbit, showing up as a _x in the
timing solution, if significant. However, this contribution
is even smaller than the contribution to the advance of
periastron, since it is greatly suppressed by the fact that i is
close to 90° (_xpm ∝ cot i ≈ 0.01; see Table IV).

4. Next-to-leading-order contributions
in the mass function

The inclination of the binary orbit is linked to the projected
semimajor axis x in Eq. (4) via the binary mass function. In
Newtonian gravity, one finds (see, e.g., Refs. [4,35])

sin i ¼ nbx
βOXB

; ð18Þ

where nb and x are both (observable) Keplerian parameters,
generally known to very high precision for a binary pulsar.
As we discuss later (Sec. V C), the measurement of the
Shapiro delay in the double pulsar gives access to sin i, and,
therefore, Eq. (18) leads to an additional constraint for the
two masses mA and mB.
In the 1PN approximation, Kepler’s third law, which

enters the derivation of Eq. (18), gets modified by an
additional term [see Eq. (3.7) in Ref. [28] and Eq. (3.7) in
Ref. [35]]. Consequently, Eq. (18) gets modified as well at
the 1PN level. Using the 1PN expression for Kepler’s third
law, one finds

sin i ¼ nbx
βOXB

"
1þ

#
3 −

1

3
XAXB

$
β2O

%
: ð19Þ

We use the fact that for the Damour-Deruelle solution the
Newtonian relation between the semimajor axis of the
pulsar orbit and the semimajor axis of the relative orbit also
holds at the 1PN level, i.e., aA ¼ ðmB=MÞaR þOðv4=c4Þ
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(see Refs. [28,29] and the discussion in Ref. [63]). With Pb,
x, and the masses from Table IV, one finds for the 1PN
correction in Eq. (19) approximately 1.3 × 10−5, which is
only about a factor of 1.3 larger than the error for sin i in
Table IV. For that reason, we use the full 1PNmass function
(19). This is the first time that 1PN corrections to the mass
function become relevant for any binary pulsar.

5. Secular changes in orbital period

The observed change in the orbital period is a combi-
nation of effects intrinsic to the system and apparent
changes related to a temporal change in the Doppler factor
D in Eq. (1) [122]. For the double pulsar, by far the
dominant contribution to _Pb is the orbital period decay due
to the emission of GWs. In GR, GW damping enters at the
2.5PN level in the equations of motion (see Ref. [123] and
references therein). The explicit expression for the leading-
order changes due to GW emissions for an eccentric orbit
are worked out in Ref. [124] (see Ref. [4] for a more pulsar-
astronomy-adapted expression). The Hulse-Taylor pulsar is
the first binary system where the leading-order GW damp-
ing has been tested [2,30].
The NLO correction to the change in the orbital period

corresponds to the 3.5PN terms in the equations of motion
and, hence, to the 1PN corrections in the radiation reaction
force [125–127]. It is calculated in Ref. [128]. For the
double pulsar, this contribution amounts to about −1.75 ×
10−17 [110]. This is about a factor of 4.5 smaller than the
error in _Pb (see Table IV). Although this higher-order
correction is, in principle, still negligible, we include it in
our analysis. This is of particular interest for the compari-
son with the LIGO/Virgo results in Sec. VI B 2. In the near
future, however, that contribution will become of impor-
tance (see Ref. [110]).
Yet another intrinsic effect that changes the orbital

period in the double pulsar is the mass loss related to the
spin-down of the pulsars [122]. This mass loss is a
result of Einstein’s energy-mass equivalence in the sense
that here one is seeing the loss of mass associated with the
loss of rotational (kinetic) energy of the pulsar. In Ref. [110],
these contributions are calculated based on Eq. (4.1) in
Ref. [122].While for B this is negligible, for A one has [110]

_P _mA
b ¼ 2.3 × 10−17 × Ið45ÞA : ð20Þ

For two reasons, it is important to include this contribution
in the analysis below. First, given the range for Ið45ÞA (see the
end of Sec. VA 2), _P _mA

b can be as large as 3.1 × 10−17,
which is a fair fraction of the measurement error of _Pb
(see Table IV). Second, andmore importantly, when estimat-
ing a MOI constraint based solely on the double pulsar

TABLE IV. Timing parameters for PSR J0737–3039A in TDB
units (see the text). Except for astrometry and DM, the parameters
are derived using Tempo with the 30-s TOA dataset. Numbers in
parentheses are 1σ uncertainties referred to the last quoted digit.
The overall reduced χ2 is 0.97.

Parameter Value

Right ascension (R.A.), α (J2000) 07h37m51s:248115ð10Þa
Declination (Dec), δ (J2000) −30°3904000: 70485ð17Þa
Proper motion R.A., μα (masyr−1) −2.567ð30Þa
Proper motion Dec., μδ (masyr−1) 2.082(38)a

Parallax, πc (mas) 1.36ðþ0.12;−0.10Þa
Position epoch (MJD) 55045.0000

Rotational frequency (freq.), ν (Hz) 44.054 068 641 962 81(17)b

First freq. derivative, _ν (Hzs−1) −3.4158071ð11Þ×10−15b

Second freq. derivative, ν̈ (Hzs−2) −2.286ð29Þ×10−27b

Third freq. derivative, ⃛ν (Hzs−3) 1.28ð26Þ×10−36b

Fourth freq. derivative, ν⃜ (Hz s−4) 4.580ð86Þ×10−43 b

Timing epoch, t0 (MJD) 55700.0

Profile evolution, FD parameter c1 0.0000180(75)
Profile evolution, FD parameter c2 −0.0001034ð10Þ
Profile evolution, FD parameter c3 0.0000474(26)

Dispersion measure, DM (pccm−3) 48.917 208

Orbital period, Pb (day) 0.102 251 559 297 3(10)
Projected semimajor axis, x (s) 1.415 028 603(92)
Eccentricity (Kepler equation), eT 0.087 777 023(61)
Epoch of periastron, T0 (MJD) 55 700.233 017 540(13)
Longitude of periastron, ω0 (deg) 204.753 686(47)

Periastron advance, _ω (deg yr−1) c 16.899 323(13)
Change of orbital period, _Pb −1.247920ð78Þ×10−12

Einstein delay amplitude, γE (ms) 0.384 045(94)
Logarithmic Shapiro shape, zs 9.65(15)
Range of Shapiro delay, r (μs) 6.162(21)
NLO factor for signal prop., qNLO 1.15(13)
Relativistic deformation of orbit, δθ 13ð13Þ×10−6

Change of proj. semimajor axis, _x 8ð7Þ×10−16

Change of eccentricity, _eT (s−1) 3ð6Þ×10−16

Derived parameters

sini¼1−expð−zsÞ 0.999936ðþ9=−10Þ
Orbital inclination, i (deg) 89.35(5) or 90.65(5)
Total mass, M (M⊙)

d 2.587052ðþ9=−7Þ
Mass of pulsar A, mA (M⊙)

d 1.338185ðþ12=−14Þ
Mass of pulsar B, mB (M⊙)

d 1.248868ðþ13=−11Þ
Galactic longitude, l (deg) 245.2357
Galactic latitude, b (deg) −4.5049
Proper motion in l, μl (masyr−1) −3.066ð35Þ
Proper motion in b, μb (masyr−1) −1.233ð31Þ
Distance from πc, d (pc) 735(60)
Transverse velocity, vT (kms−1) 11.5(10)

aSee Secs. IV B and IV C for the derivation of these values.
bSee Ref. [103].
c _ω≡2πk=Pb. k is the PK timing parameter in Eq. (7).
dSee Ref. [104].
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While these numbers cannot compete with those
obtained from LIGO/Virgo and NICER observations
(see, e.g., Refs. [112,116–118]), they show that the
double pulsar constraints are narrowing in on realistic
values for NS radii. This is expected to improve consid-
erably over the next years (see Hu et al. [110]). For
the masses, we get mA ¼ 1.338183ðþ78= − 52Þ M⊙
and mB ¼ 1.248869ðþ38= − 27Þ M⊙. These masses are
clearly more uncertain than in Eqs. (36) and (37), but they
do not require any assumption about the EOS for matter at
supranuclear densities.
Instead of using the Lense-Thirring effect to constrain

the MOI, one can conversely use existing constraints on the
NS EOS to test the contribution of spin-orbit coupling
to the precession of the pulsar orbit (cf. Sec. VII in
Ref. [110]). For this, we introduce a scaling factor λLT
for the Lense-Thirring part in Eq. (14), i.e.,

k ¼ k1PN þ k2PN þ λLTkLT;A; ð49Þ

For GR, one has λLT ¼ 1. Similar to the procedure above,
we can now calculate mA, mB, and λLT by simultaneously
solving the three equations kobs ¼ kðmA; mB; λLTjIAÞ,
sobs ¼ sðmA; mBÞ, and _Pint

b ¼ _PbðmA; mBjIAÞ, where this
time in our Monte Carlo runs IA is randomly chosen from
the probability distribution based on the EOS constraints in
Ref. [112] (like in Sec. VI B 1, when determining the
masses from k and s). In a sense, we determine the masses
of A and B from the PK parameters s and _Pb to extract the

Lense-Thirring contribution form the observed periastron
advance k, by assuming a range of values for IA. We obtain

λLT ¼ 0.7% 0.9 ð68% C:L:Þ: ð50Þ

This is consistent with GR, but admittedly not very
constraining, at least when compared to the weak-field
(test-particle-type) frame-dragging experiments in the
Solar System (Lense-Thirring precession of satellite orbits
[188] and Pugh-Schiff precession of gyroscopes [189]).
Moreover, the above result is not generic, in the sense of the
parametrized post-Newtonian (PPN) tests in the Solar
System. In order to extract the Lense-Thirring contribution
to k, we assume that all three, the advance of periastron
without Lense-Thirring contribution [i.e., Eq. (9)], the GW
damping, and the Shapiro shape, can be calculated from
GR. This is generally not expected to be the case in
alternative gravity theories. As a result, one would have to
implement the equivalent analysis for any other gravity
theory, in order to obtain a fully consistent Lense-Thirring
test. Given the low precision of the LT test, one may ask if,
in view of the other tests with the double pulsar, mostly
based on very precisely measured PK parameters, this then
yields any additional constraints for the gravity theories
under consideration. For the alternative theories discussed
in Sec. VII, at least, spin-orbit effects observed in the
double pulsar (including Ωspin

B ) do not contribute to the
constraints. See Ref. [110] for a more detailed discussion,
in particular, on this test in the context of near-field
modifications of GR.
Finally, from the analysis outlined above, one can also

extract a test of the total advance of periastron k, in
an s- _Pb-k test. From this, one obtains kobs=kGR ¼
1.000015ð26Þ.

4. Relativistic deformation of the orbit

The relativistic deformation of the orbit discussed in
context of the Rømer delay (Sec. VA) is detected in our
measurements. Similar to the report of a 1.5σ detection
of δθ for PSR B1913þ16 [172], our value is also formally
detected only just above the 1σ level. However, as we
demonstrate in Fig. 9, the parameter is, in fact, well
constrained and in full agreement with the expectation
from GR. The figure also demonstrates a correlation
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FIG. 8. Probability distribution for the MOI IA of A derived
from the k − s − _Pb test. The vertical dashed red line indicates
the upper bound with 90% confidence. IA > 0 is assumed as a
prior. The light gray band shows the 90% credible interval one
obtains with the limits from Ref. [112] using the radius-MOI
relation of Ref. [114]. As a comparison, the horizontal black lines
indicate different 90% ranges derived from (top to bottom) tidal-
deformability constraints from GW170817 [117], Bayesian
modeling of a range of EOSs [116], and two different constraints
from NICER observations [118]. The red area is excluded by the
causality condition for the EOS [169].
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GW and EM constraints [108,110,111] to infer the incli-
nation of the binary.

B. Masses

Owing to its low mass, most of the SNR for GW170817
comes from the inspiral phase, while the merger and
postmerger phases happen at frequencies above 1 kHz,
where LIGO and Virgo are less sensitive (Fig. 1). This case
is different than the BBH systems detected so far, e.g.,
GW150914 [112–115] or GW170814 [53]. The inspiral
phase evolution of a compact binary coalescence can be
written as a PN expansion, a power series in v=c, where v is
the characteristic velocity within the system [65]. The
intrinsic parameters on which the system depends enter the
expansion at different PN orders. Generally speaking,
parameters that enter at lower orders have a large impact
on the phase evolution and are thus easier to measure using
the inspiral portion of the signal.
The chirp mass M enters the phase evolution at the

lowest order; thus, we expect it to be the best constrained
among the source parameters [32,61,93,94]. The mass ratio
q, and consequently the component masses, are instead
harder to measure due to two main factors: (1) They are
higher-order corrections in the phase evolution, and (2) the

mass ratio is partially degenerate with the component of the
spins aligned with the orbital angular momentum
[93,94,116], as discussed further below.
In Fig. 5, we show one-sided 90% credible intervals of

the joint posterior distribution of the two component masses
in the source frame. We obtain m1 ∈ ð1.36; 1.89Þ M⊙
and m2 ∈ ð1.00; 1.36Þ M⊙ in the high-spin case, and

FIG. 4. Marginalized posteriors for the binary inclination (θJN)
and luminosity distance (DL) using a uniform-in-volume prior
(blue) and EM-constrained luminosity distance prior (purple)
[108]. The dashed and solid contours enclose the 50% and 90%
credible regions, respectively. Both analyses use a low-spin prior
and make use of the known location of SSS17a. The 1D marginal
distributions have been renormalized to have equal maxima to
facilitate comparison, and the vertical and horizontal lines mark
90% credible intervals.

FIG. 5. The 90% credible regions for component masses using
the four waveform models for the high-spin prior (top panel) and
low-spin prior (bottom panel). The true thickness of the contour,
determined by the uncertainty in the chirp mass, is too small to
show. The points mark the edge of the 90% credible regions. The
1D marginal distributions have been renormalized to have equal
maxima, and the vertical and horizontal lines give the 90% upper
and lower limits on m1 and m2, respectively.
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with the values reported in Ref. [3], which also used the
TaylorF2 model. However, here we use a lower starting
frequency of 23 Hz instead of 30 Hz, resulting in upper
bounds on Λ1 and Λ2 that are about 10% (for the high-spin
prior) and about 20% (for the low-spin prior) smaller than
in Ref. [3]. This improvement occurs because, although
most of the tidal effects occur above several hundred Hz as
shown in Fig. 2, the tidal parameters still have a weak
correlation with the other parameters. Using more low-
frequency information improves the measurement of the
other parameters and thus decreases correlated uncertain-
ties in the tidal parameters.
The three waveform models that use the same NRTidal

prescription produce nearly identical 90% upper limits that
are about 10% smaller than those of TaylorF2. The reason
for this result is that the tidal effect for these models is

larger than for TaylorF2, as shown in Fig. 2, so the tidal
parameters that best fit the data will be smaller in order to
compensate. Including precession and the spin-induced
quadrupole moment in the PhenomPNRT model does not
noticeably change the results for the tidal parameters
compared to the other two models with the NRTidal
prescription. Overall, as already found in Ref. [3] the
NRTidal models have 90% upper limits that are about
20%–30% lower than the TaylorF2 results presented.

FIG. 9. Inferred spin parameters using the PhenomPNRT
model as in Fig. 8, but in the low-spin case where the
dimensionless component spin magnitudes χ < 0.05. The pos-
terior probability densities for the dimensionless spin compo-
nents and for χp are plotted at the reference gravitational-wave
frequency of f ¼ 100 Hz.

FIG. 10. PDFs for the tidal deformability parameters Λ1 and Λ2

using the high-spin (top panel) and low-spin (bottom panel)
priors. The blue shading is the PDF for the precessing waveform
PhenomPNRT. The 50% (dashed lines) and 90% (solid lines)
credible regions are shown for the four waveform models. The
seven black curves are the tidal parameters for the seven
representative EOS models using the masses estimated with
the PhenomPNRT model, ending at the Λ1 ¼ Λ2 boundary.
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On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a
low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal,
GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we
improve initial estimates of the binary’s properties, including component masses, spins, and tidal parameters,
using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of
gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also
compare results inferred using several signal models, which are more accurate and incorporate additional
physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave
source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal
parameters, and continue to find no evidence for nonzero component spins. The component masses are
inferred to lie between 1.00 and 1.89 M⊙ when allowing for large component spins, and to lie between 1.16
and 1.60 M⊙ (with a total mass 2.73þ0.04

−0.01 M⊙) when the spins are restricted to bewithin the range observed in
Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we
constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the
secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal
deformability parameter Λ̃ are (0,630) when we allow for large component spins, and 300þ420

−230 (using a 90%
highest posterior density interval) when restricting the magnitude of the component spins, ruling out several
equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian
analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.
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I. INTRODUCTION

On August 17, 2017, the advanced gravitational-wave
(GW) detector network, consisting of the two Advanced
LIGO detectors [1] and Advanced Virgo [2], observed the
compact binary inspiral event GW170817 [3] with a total
mass less than any previously observed binary coalescence
and a matched-filter signal-to-noise ratio (SNR) of 32.4,
louder than any signal to date. Follow-up Bayesian param-
eter inference allowed GW170817 to be localized to a
relatively small sky area of 28 deg2 and revealed compo-
nent masses consistent with those of binary neutron star
(BNS) systems. In addition, 1.7 s after the binary’s
coalescence time, the Fermi and INTEGRAL gamma-ray
telescopes observed the gamma-ray burst GRB 170817A
with an inferred sky location consistent with that measured

for GW170817 [4], providing initial evidence that the
binary system contained neutron star (NS) matter.
Astronomers followed up on the prompt alerts produced

by this signal, and within 11 hours the transient SSS17a/AT
2017gfo was discovered [5,6] and independently observed
by multiple instruments [7–11], localizing the source of
GW170817 to the galaxy NGC 4993. The identification of
the host galaxy drove an extensive follow-up campaign
[12], and analysis of the fast-evolving optical, ultraviolet,
and infrared emission was consistent with that predicted for
a kilonova [13–17] powered by the radioactive decay of
r-process nuclei synthesized in the ejecta (see Refs. [18–28]
for early analyses). The electromagnetic (EM) signature,
observed throughout the entire spectrum, provides further
evidence that GW170817 was produced by the merger of a
BNS system (see, e.g., Refs. [29–31]).
According to general relativity, the gravitational waves

emitted by inspiraling compact objects in a quasicircular
orbit are characterized by a chirplike time evolution in their
frequency that depends primarily on a combination of the
component masses called the chirp mass [32] and second-
arily on the mass ratio and spins of the components. In
contrast to binary black hole (BBH) systems, the internal
structure of the NS also impacts the waveform and needs to

*Full author list given at the end of the article.
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EOS and maximum mass

Construction of the Equation of State: 
• composition of the core 
• nuclear approach in the computations 

Composition: 
• neutrons, protons, electrons, muons 
• hyperons 
• deconfined quarks  

Nuclear approach: 
• Relativistic mean field theory 
• Skyrme density functional
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Constraints on symmetry energy parameters
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Fig. 6. Experimental constraints for symmetry energy parameters, adapted and revised from Ref. [39]. See the text for further discussion and references
to the experimental data and interpretation. G and H refer to the neutron matter studies of Gandolfi et al. [46] and Hebeler et al. [64], respectively.

this correlation with polarization corrections included is actually negative, as can most easily be seen by considering the
equations

d(Ss/Sv) = a dL + b dSv, drnp = ↵ d(Ss/Sv) + � dSv. (69)

Holding rnp fixed implies that the correlation slope in Sv � Ss/Sv space would be negative if �/↵ > 0; the slope in Sv–L space
would be negative if �/↵ > �b. From Eq. (63) we observe that, for 208Pb,

�

↵
= 3Ze2

140roSv

(1 + (10/3)(Ss/Sv)A�1/3)(1 + (Ss/Sv)A�1/3)

I � (7/3)(Ss/Sv)A�1/3 ' 0.025 (70)

so Ss/Sv and Sv are anticorrelated irrespective of the nuclear force model. On the other hand,

b = � L
S2v

d(Ss/Sv)

d(L/Sv)
, (71)

which is sensitive to the interaction. For the simple interaction of Eq. (58), b ' �0.03 and in this case rnp has a positive
correlation in Sv–L space with a slope dL/dSv ' 0.3 which is, nevertheless, nearly flat. Without polarization effects, we
would have found dL/dSv ' 1.8. Hartree– Fock calculations [63,39] with a variety of realistic interactions indicated that
dL/dSv ranges from �3 to �5. Irrespective of the exact value, it is clear that this correlation is nearly orthogonal to those
from energies or dipole polarizabilities and is therefore extremely valuable in determining values for Sv and L.

3.2. Symmetry parameter constraints from experiment

Measurements of all three types of observables, which have different correlations, can restrict the ranges of the symmetry
parameters considerably. The experimental situation has been summarized in Refs. [45,39] and is displayed in Fig. 6.

The binding energy correlation (labeled ‘‘Masses’’) is taken from Hartree–Fock calculations with the UNEDF0 density
functional [65], inwhich the nominal fitting errorwas arbitrarily chosen to be� = 1MeV.14 Importantly, and demonstrating
the robustness of this result, the shape and orientation of the ellipse are the same as predicted by the liquid droplet model,
dL/dSv ⇡ 12, once the dependence of Ss on Sv and L is taken into account.

The constraints for the neutron skin thickness of 208Pb used in Fig. 6 are taken from a study by Chen et al. [63], who
converted the experimental results [66–71] for Sn isotopes into an equivalent value for 208Pb: rnp ' (0.175 ± 0.020) fm.

14 Ref. [65] had chosen � = 2 MeV, but this value seems to be an overestimate, as negative values for L would exist within the 1� confidence ellipse.
Negative values of L imply negative neutron matter pressures at ns .
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and the density has the Fermi shape of Eq. (34), the Hi integrals are analytic:

Hi =
Z ⇣ r

R

⌘i d3r
vsym

= 4⇡noa3+i

SvRi [Fi+2(y) � (2 + i)T Fi+1(y) + · · · ] , (55)

where

T = b2 + 3b3/2 + 11b4/6 + 25b5/12 + 137b6/60 + · · · (56)

Note that
PJ

j=1 bj = 1 ensures vsym(u = 1) = Sv/no. In principle, any vsym can be fit if J is large enough, but as a simple
example, consider a three term fit to the conventional expression of the symmetry energy

S2(u) ' Sv + L
3
(u � 1) + Ksym

18
(u � 1)2 + · · · ; (57)

if Ksym = 18(L/3 � Sv) ' �210 MeV, then S2(0) approximately vanishes. Fitting the energy and its first two derivatives at
u = 1 give10

b1 = 1 + L
3Sv

+
✓

L
3Sv

◆2

� Ksym

18Sv

' 2.37,

b2 = Ksym

9Sv

� L
3Sv

� 2
✓

L
3Sv

◆2

' �2.14,

b3 =
✓

L
3Sv

◆2

� Ksym

18Sv

' 0.76, (58)

T = � L
3Sv

� 1
2

✓
L

3Sv

◆2

+ Ksym

36Sv

= �1
2

"

1 + L
3Sv

+
✓

L
3Sv

◆2
#

' �0.992.

In the last expression for T we used Ksym = 18(L/3 � Sv) following from assuming S2(0) = 0.11
It is now possible to make a connection with the liquid droplet model [58,57]. Without polarization corrections, the total

symmetry energy of a nucleus in the liquid droplet model is

Esym = SvAI2

1 + SsA�1/3/Sv

, (59)

where Ss is the surface symmetry parameter. In the hydrodynamic model, this energy is A2I2/H0 according to Eq. (43). Using
Eq. (55) to leading orders,

H0 = A
Sv

✓
1 + Ss

SvA1/3

◆
= A

Sv

✓
1 � 3T a

roA1/3

◆
, (60)

showing that Ss = �3T Sva/ro. Therefore, once vsym is specified, the liquid droplet parameter Ss can be calculated and the
total symmetry and Coulomb energy, the dipole polarizability, and the neutron skin thickness can be found. For the above
example, Ss/Sv ' 1.36. It also must follow that

Hi = A
Sv

✓
3

3 + i
+ Ss

SvA1/3

◆
. (61)

We can now form final expressions for the dipole polarizability and the neutron skin thickness:

↵D ' AR2

20Sv

✓
1 + 5

3
Ss

SvA1/3

◆
, (62)

rnp '
s

3
5(1 � I2)

2ro
3

✓
1 + Ss

SvA1/3

◆�1 
I
Ss
Sv

� 3Ze2

140roSv

✓
1 + 10

3
Ss

SvA1/3

◆�
. (63)

10 The following solutions differ from those in Ref. [59].
11 This fit to Eq. (57) is not very good for small u since [nvsym(n)]n!0 = Sv/b1 which should, in fact, vanish; a more realistic fit with larger J gives more
negative values of T .
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Table 2

Neutronmatter calculations fit to the energy parameterization of Eq. (22). GCR aremodels
from Ref. [46]; DHS are models from Drischler and Schwenk (unpublished).

Model a ↵ b � Sv L p1 �1
MeV MeV MeV MeV MeV fm�3

GCR 0 12.7 0.49 1.78 2.26 30.5 31.3 7.272 2.113
GCR 1 12.7 0.48 3.45 2.12 32.1 30.8 10.402 2.335
GCR 2 12.8 0.488 3.19 2.20 32.0 40.6 10.537 2.343
GCR 3 13.0 0.475 3.21 2.47 32.0 44.0 13.274 2.487
GCR 4 12.6 0.475 5.16 2.12 33.7 51.5 14.304 2.533
GCR 5 13.0 0.50 4.71 2.49 33.8 56.2 18.678 2.700
GCR 6 13.4 0.514 5.62 2.436 35.1 63.6 20.933 2.770
DHS 0 10.94 0.459 4.106 1.977 31.1 39.4 8.125 2.182
DHS 1 11.00 0.460 4.425 1.947 31.4 41.0 8.453 2.206
DHS 2 11.95 0.495 3.493 2.632 31.4 45.3 13.760 2.509
DHS 3 11.02 0.460 4.683 1.935 31.7 42.4 8.768 2.229
DHS 4 10.95 0.454 5.158 1.972 32.1 45.4 9.676 2.290
DHS 5 10.34 0.429 4.954 2.024 31.3 43.4 9.180 2.258
DHS 6 10.29 0.433 7.227 1.842 33.5 53.3 11.241 2.384

3. Nuclear structure and the nuclear symmetry energy

To confirm the understanding of the intermediate EOS, we turn to experimental data for nuclei which explore the nuclear
symmetry energy. Experimental information concerning the symmetry energy is usually encoded in the parameters Sv and
L, defined as

Sv ⌘ 1
8

✓
@2E(n, x)

@x2

◆

ns,1/2
' S(ns)

L ⌘ 3
8

✓
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. (23)

For the symmetry energy of Eq. (16), one finds L = 3� Sv so that 0.9Sv . L . 2.1Sv . For the energy formula Eq. (22), we
find that Sv = B + a + b and L = 3(a↵ + b�). For each set of neutron matter calculations, the corresponding values of
Sv , L have been tabulated in Table 2, which reveals that 30.5 MeV  Sv  35.1 MeV and 30.8 MeV  L  63.6 MeV. As
anticipated, these parameters are positively correlated. In the quadratic approximation for the isospin dependence of the
nucleon energies, L = 3p(ns, 0)/ns.

3.1. Hydrodynamic model of the nuclear symmetry energy

A variety of experiments reveal information about the nuclear symmetry energy. None of these experiments are capable,
at the present time, of individually pinpointing the parameters Sv and L. Rather, each experiment reveals that the parameters
are correlated. Themost important concern nuclear binding energies, the neutron skin thickness in neutron-rich nuclei, and
giant dipole resonances. Each type of measurement provides a different correlation. By combining different experiments,
and examining different correlations, one can restrict ranges for the symmetry parameters. We begin the discussion by
exploring an analytic nuclear model that reveals the origin of these correlations.

Lipparini & Stringari [56] explored a model with a simplified nuclear Hamiltonian energy density
H = HB(n, ↵) + Q(n)(dn/dr)2,

HB(n, ↵) = HB(n, 0) + vsym(n)↵2 (24)
where the uniform matter contribution is HB(n, ↵), Q(n) controls the gradient contributions, vsym = S2/n, and ↵ =
n � 2np = nn � np is the isovector density. In nuclei, the charge repulsion among the protons redistributes neutrons and
protons and reduces the neutron skin thickness. To take this into account, and to extend the model of Ref. [56], we include
a Coulomb contribution:

H = HB(n, ↵) + HC (n, ↵) + Q(n)(dn/dr)2, (25)
where, in spherical symmetry, HC = npVC/2 and the Coulomb potential is

VC (r) = e2
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If the protons are uniformly distributed for r < R,
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2.4. The intermediate EOS and pure neutron matter

Matter in neutron stars at densities between n0 and at least 2ns is most likely a structureless fluid of nucleons which is
extremely neutron rich due to the condition of beta equilibrium. This condition is equivalent to minimization of the total
energy per baryonwith respect to the charge fraction x = np/nwhere nn and np are the neutron and proton baryon densities,
respectively, and n = nn +np. The difference between the energy of pure neutronmatter and symmetric matter (with equal
numbers of neutrons and protons) is called the nuclear symmetry energy S(n), and the energies of intermediate proton
fractions can be approximated with a quadratic interpolation between these extremes:

E(n, x) ' E1/2(n) + S(n)(1 � 2x)2, (14)
where E1/2(n) is the energy per baryon of symmetric matter. We define E1/2(ns) = �B, where B ' 16 MeV is the bulk
binding energy per baryon of symmetric matter at the saturation density. We make the distinction here between S(n) and
S2(n) defined by

S2(n) = (1/8)(@2E(n, x)/@x2)x=1/2. (15)
Inmany treatments, S2 is also called the symmetry energy, but only if the quadratic approximation is validwill S(n) = S2(n).
A convenient estimate for the symmetry energy near ns is

S(n) = Sv(n/ns)
� ; (16)

Sv = S2(ns). Nuclear experimental information and neutron matter calculations indicate that 26 MeV . Sv . 34 MeV and
0.3 . � . 0.7, with the value of � positively correlated with Sv . The pressure corresponding to Eqs. (14) and (16) is

p(n, x) = n2 @E(n, x)
@n

' p1/2(n) + Sv� ns

✓
n
ns

◆�+1

(1 � 2x)2, (17)

where p1/2(n) is the pressure of symmetric matter. Note that, by definition, p1/2(ns) = 0; to leading order, near ns, the
symmetric matter pressure increases linearly with density, p1/2(n) ' (Ks/9)(n � ns).

Matter in neutron stars is in beta equilibrium with µn � µp = µe, which follows from minimizing the total baryon and
electron energies with respect to the proton fraction x:

@[E(n, x) + Ee(n, x)]/@x = 0. (18)
Ee = (3/4)h̄cx(3⇡2nx)1/3 is the electron energy per baryon assuming relativistic degeneracy. For the symmetry energy
ansatz Eq. (16), applicable to uniform nucleonic matter, this is equivalent to

4Sv (n/ns)
� (1 � 2x) = h̄c(3⇡2nx)1/3. (19)

This can be solved as a cubic equation for x at a specific density, but since x is small, has the approximate solution

x� ' 64S3v (n/ns)
3�

3⇡2ns(h̄c)3 + 384S3v (n/ns)3�
(20)

which has the value x� ' 0.040 when n = ns and Sv = 31 MeV.6 The pressure of pure neutron matter using Eq. (16), at ns,
is p(ns) = � nsSv . In beta equilibrium, to lowest orders, this is modified:

p�(ns) ' � nsSv

"

1 �
✓
4Sv

h̄c

◆3 4� � 1
3⇡2ns�

#

. (21)

The correction term in Eq. (21) is of order 1.4%, and can be ignored to good approximation. At higher densities, the proton
fraction and the correction term generally increase due to the increasing symmetry energy. There is also a contribution from
p1/2(n). However, for densities up to 2ns the neutron star matter pressure is essentially equivalent to pure neutron matter
pressure.

Recent calculations of the properties of pure neutron matter have produced estimates of the pressure–energy density
relation up to about 2ns. Ref. [46] showed that the neutron matter energy for densities less than about 2ns was adequately
approximated by the double power law

E(n, 0) ' a(n/ns)
↵ + b(n/ns)

� (22)
where a, b, ↵ and � are parameters. Table 2 displays parameter values found by Ref. [46] for quantumMonte Carlo neutron
matter calculations.We have also displayed parameter values that fit the neutronmatter results of unpublished calculations
of Drischler & Schwenk up to densities ' 1.5ns.

Naively, we can extend neutron matter calculations to arbitrarily higher densities using Eq. (22). Doing so, and using the
TOV equations to produceM–R curves, we find many of the neutron matter calculations in Table 2 to be too soft to support
the observed value ofMmax (Fig. 4). It appears that the EOS must become substantially stiffer at densities not far above ns in
order that observed neutron star masses can be explained. Nevertheless, it is interesting to observe that Mmax and R1.4 for
these extrapolations are near the s = 1/3 boundary for themaximally compact EOS.

6 In reality, muons should be included because µe = h̄c(3⇡2nsx� )1/3 ' 113 MeV > mµc2 ' 105 MeV. This omission has little effect on our discussion.
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for r < R and VC = Ze2/r for r > R. We have found that a reasonable approximation for aWoods–Saxon proton distribution,
and one that keeps themodel analytic, is provided by assuming Eq. (27) to apply for all r . Furthermore, the Coulombpotential
and the total Coulomb energy when the Coulomb potential is self-consistently determined are adequately described by the
same approximation. Where the discrepancy between this approximation and the real potential is large, the proton density
is small.

We now optimize the total nuclear energy with respect to the densities n and ↵ subject to the constraints

A =
Z

⇢ d3r, N � Z =
Z

↵ d3r, (28)

producing the chemical potentials µ and µ̄:

�

�n
[H � µn] = 0,

�

�↵
[H � µ̄↵] = 0. (29)

These lead to

µ = @[HB + HC ]
@n

� 2
d
dr

⇥
Qn0⇤ + @Q
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�
n0�2 ,

µ̄ = @[HB + HC ]
@↵

. (30)

3.1.1. The isoscalar density n
Multiplying the first of Eq. (29) by dn/dr and the second by d↵/dr , their sum can be integrated:

Q(n)(dn/dr)2 = HB(n, ↵) + HC (n, ↵) � µn � µ̄↵, (31)

for which the boundary condition µno + µ̄↵o = HB(no, ↵o) at the center.
We make the quadratic approximation for the energy density of uniform symmetric matter:

HB(n, 0) = n

�B + Ks

18
(1 � u)2

�
(32)

with bulk binding energy B, and u = n/ns. In the case that ↵o ' 0, one has no = ns = 0.16 MeV fm�3. For laboratory nuclei,
↵o is small. We are primarily interested in the behavior of ↵, and will assume that the total density, to lowest order, can be
found by assuming ↵ ' 0 in Eq. (31). We also approximate Q(n) = Q/n, with Q constant, which leads to an equation for
the isoscalar density as a function of position:

du
dz

= �u(1 � u), a = 3

s
2Q
Ks

, (33)

where u = n/no and z = r/a, where the surface thickness parameter is a. This has the solution of a Fermi function, or
Woods–Saxon distribution (which was assumed by Ref. [56]),

u = 1
1 + ez�y . (34)

Here y is a constant of integration, determined from the first of the constraints Eq. (28):
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n d3r = 4⇡noa3F2(y),
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1 + ez�y ' yi+1
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Here Fi is the usual Fermi integral, and the right-most approximation holds for y � 1 and i 6= �1 if we ignore an
exponentially small term. This is justified, since one finds [Eq. (35)] that y ' R/a ' 13 for 208Pb (a is evaluated below).

The parameter Ks ' 240 MeV from experiment [5–7], and the value of Q follows from the observed value [57] of the
90–10 surface thickness:

t90�10 = a
Z 0.9

0.1

du
du/dz

= 4a ln(3) ' 2.3 fm, (36)

giving a = 0.523 fm and

Q = Ks
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' 3.65 MeV fm2. (37)
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where p1/2(n) is the pressure of symmetric matter. Note that, by definition, p1/2(ns) = 0; to leading order, near ns, the
symmetric matter pressure increases linearly with density, p1/2(n) ' (Ks/9)(n � ns).

Matter in neutron stars is in beta equilibrium with µn � µp = µe, which follows from minimizing the total baryon and
electron energies with respect to the proton fraction x:

@[E(n, x) + Ee(n, x)]/@x = 0. (18)
Ee = (3/4)h̄cx(3⇡2nx)1/3 is the electron energy per baryon assuming relativistic degeneracy. For the symmetry energy
ansatz Eq. (16), applicable to uniform nucleonic matter, this is equivalent to
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The correction term in Eq. (21) is of order 1.4%, and can be ignored to good approximation. At higher densities, the proton
fraction and the correction term generally increase due to the increasing symmetry energy. There is also a contribution from
p1/2(n). However, for densities up to 2ns the neutron star matter pressure is essentially equivalent to pure neutron matter
pressure.

Recent calculations of the properties of pure neutron matter have produced estimates of the pressure–energy density
relation up to about 2ns. Ref. [46] showed that the neutron matter energy for densities less than about 2ns was adequately
approximated by the double power law

E(n, 0) ' a(n/ns)
↵ + b(n/ns)

� (22)
where a, b, ↵ and � are parameters. Table 2 displays parameter values found by Ref. [46] for quantumMonte Carlo neutron
matter calculations.We have also displayed parameter values that fit the neutronmatter results of unpublished calculations
of Drischler & Schwenk up to densities ' 1.5ns.

Naively, we can extend neutron matter calculations to arbitrarily higher densities using Eq. (22). Doing so, and using the
TOV equations to produceM–R curves, we find many of the neutron matter calculations in Table 2 to be too soft to support
the observed value ofMmax (Fig. 4). It appears that the EOS must become substantially stiffer at densities not far above ns in
order that observed neutron star masses can be explained. Nevertheless, it is interesting to observe that Mmax and R1.4 for
these extrapolations are near the s = 1/3 boundary for themaximally compact EOS.

6 In reality, muons should be included because µe = h̄c(3⇡2nsx� )1/3 ' 113 MeV > mµc2 ' 105 MeV. This omission has little effect on our discussion.
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FIG. 4. Symmetry energy and its slope at saturation density re-
spectively denoted J and L for Skyrme models used in this paper.
Experimental data constraints are presented: in blue is the compiled
constraint presented in Ref. [42], and in red that of PREX-II. The
names of the EoSs in green refer to nucleonic models that do not
permit the direct Urca process.

BSk20, BSk26, KDE0v1, SLy2, DH, and Skb do not permit
DUrca (nDUrca > nmax); they are presented in green in Figs. 4
and 5.

The collective motion of nuclei is a source of giant reso-
nances: let there be an exterior isoscalar monopole operator,
the strength function of excited states in response to that
operator is directly linked to the nuclear incompressibility
K for which experimental data are available (see Tables I
and II of Ref. [58]); again, the relation between experimen-
tal data and K is established within a theoretical framework

26 28 30 32 34 36 38
J (MeV)

20

40

60

80

100

120

140

L
(M

eV
)

NL3

/NL3DD2

GM1

TM1
TM2

DDH

BSR6

TM1

TM2

FSU2

PR
EX

-II

Oertel+17

FIG. 5. Symmetry energy and its slope at saturation density re-
spectively denoted J and L for the relativistic mean-field models used
in this paper. Experimental data constraints are presented: in blue is
the compiled constraint presented in Ref. [42], and in red is that of
PREX-II. The names of the EoSs in green refer to nucleonic models
that do not permit the direct Urca process.

(e.g., Skyrme or Gogny forces). Constraints on L and J can
also be extracted, such as presented in Refs. [59,60].

There are also some attempts at including results from cold
atom experiments to constrain a part of the low-density EoS
using the unitary Fermi gas approach. The idea is to consider
that low-density neutron matter can be solely characterized
by an infinite-range scattering and can be considered as a
unitary Fermi gas—see Chap. 2 of Ref. [61] for details—in
which the energy per nucleon is determined by a single and
universal parameter. There are, however, no considerations of
lattice nor clusters with this approach, which are essential in
the understanding of crust physics.

Techniques to infer knowledge on microscopic parameters
of EoSs from astrophysical measurements were recently de-
signed. Bayesian inference statistical analysis of GW signal
data helps provide constraints on the EoS; we refer to Ref. [62]
for a recent study of this technique, and to Ref. [63] and refer-
ences therein for a review. GW170817 detection was used in
Ref. [64] to constrain L: the effective tidal deformability of the
binary is strongly correlated to that quantity and GW170817
indicates a preference for low L. Reference [36] discovered
strong correlations between the tidal deformability and lin-
ear combination of pairs of nuclear parameters of different
orders. References [28,29] related to NICER observations of
J0740 + 6620 used a Bayesian analysis based on likelihood
of measurement to infer high-density EoS properties. Per-
fect knowledge of the EoS under half the saturation density
(n0/2 = 0.08 fm−3) is assumed; over n0/2, a parametrized
EoS and Gaussian-process-based models are used. A similar
technique is used by Ref. [65] with chiral effective theory
(CET) constraints. Note that these techniques depend strongly
on the priors chosen.

C. The variety of core composition

In the innermost parts of NSs, densities can go as high
as 15n0. Such a supranuclear framework is out of reach for
laboratories, which leaves the description of NS cores open
to various composition hypotheses. In the present paper, we
use the following three categories: nucleonic, hyperonic, and
hybrid models for the core composition.

In addition to nucleons in the core, the presence of
hyperons—baryons with at least one strange quark—softens
the core EoS, which induces a smaller radius; hyperons in
NSs were first introduced in the 1960s. Because the nucle-
onic Fermi pressure is higher than the hyperonic pressure
at fixed density, allowing the presence of hyperons results
in a smaller radius. Softening the EoS, however, leads to a
lower maximum mass. This is a problem referred to as the
“hyperon puzzle,” which can be counteracted if one finds a
way to stimulate hyperonic pressure. One way to do so is
to instigate repulsion from the nature of baryon interactions,
see Refs. [66,67]. Hyperons are expected to appear over 2n0

through a series of reactions involving nucleons such as (but
not exclusively)

p + e− → ! + νe,

p + e− → #0 + νe,

n + e− → #− + νe. (1)
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parameter values that may be somewhat unphysical from the
point of view of the properties of neutron-rich matter near and
above the saturation density. For example, negative values of
L imply that pure neutron matter has negative pressures near
ns, implying stability for neutron clusters. The size of the
confidence ellipse scales with the assumed value of σUNEDF0,
so had a value σUNEDF0 = 1 MeV been chosen instead, the
95% confidence interval would have extended no lower than
L ! 20 MeV.

Another measure that can be applied to estimate the sizes of
confidence intervals is the rms error of the fit. For example, the
liquid droplet 68% confidence interval displayed in Figure 1 cor-
responds to an rms error of approximately 0.013 MeV baryon−1.
In other words, applied to liquid drop dense matter equations
of state, such as that of Lattimer & Swesty (1991), symmetry
parameters chosen from within this confidence region would
yield errors in neutron or proton chemical potentials of less than
about 0.013 MeV (aside from those arising from neglected shell
and pairing effects).

The UNEDF collaboration has published a second parameter
set, UNEDF1 (Kortelainen et al. 2012), for a modified energy
density functional suitable for studies of strongly elongated nu-
clei. In this study, BEs and charge radii, as well as excitation
energies, of spherical nuclei, deformed nuclei, and fission iso-
mers, were fit. The best-fit values for the symmetry parameters
of UNEDF1 lie near the 1σ confidence ellipse of UNEDF0, as
shown in Figure 1. However, this study did not discuss a cor-
relation between Sv and L. Because this fit is heavily weighted
by deformed nuclei, and because the fit includes excitation en-
ergies, it will not show the same trends as the UNEDF0 fit.

As a final demonstration that this correlation is robust, the
symmetry parameters determined from nuclear mass-fitting with
the finite-range droplet model (FRDM; Myers & Swiatecki
1990; Möller et al. 2012) have consistently produced values
of Sv and L along the UNEDF0 correlation line (Figure 1).
This occurs despite differences among nuclear models, includ-
ing the algebraic forms of the nuclear interaction and treatments
of shell, pairing, deformation, and Wigner contributions. Un-
fortunately, confidence intervals for the FRDM fits were not
published.

The correlation between symmetry parameters established
from nuclear mass fitting has previously been used to constrain
symmetry energy variations in supernova simulations (Swesty
et al. 1994), but, surprisingly, has rarely been combined with
results derived from other experimental data. We show that
doing so considerably enhances the constraints established from
other experiments.

4. OTHER EXPERIMENTAL CONSTRAINTS

The liquid droplet model implies that other nuclear observ-
ables will be related to the surface and volume symmetry coeffi-
cients and should provide additional constraints on them. Some
of these constraints were summarized by Newton et al. (2011)
and Tsang et al. (2012).

4.1. Neutron Skin Thickness

An example is the neutron skin thickness of neutron-rich
nuclei. Neglecting Coulomb effects, the difference between the
mean neutron and proton surfaces in the liquid droplet model
(Myers & Swiatecki 1969) is

tnp = 2ro

3

SsI

Sv + SsA−1/3
, (12)

Figure 2. Summary of constraints on symmetry energy parameters. The filled
ellipsoid indicates joint Sv–L constraints from nuclear masses (Kortelainen
et al. 2010). Filled bands show constraints from neutron skin thicknesses of Sn
isotopes (Chen et al. 2010), the dipole polarizability of 208Pb (Piekarewicz et al.
2012), giant dipole resonances (GDR; Trippa et al. 2008), and isotope diffusion
in heavy ion collisions (HIC; Tsang et al. 2009). The hatched rectangle shows
constraints from fitting astrophysical M–R observations (Steiner et al. 2010,
2013). The two closed regions show neutron matter constraints (H is Hebeler
et al. 2010 and G is Gandolfi et al. 2012). The enclosed white area is the
experimentally allowed overlap region.

(A color version of this figure is available in the online journal.)

which is, to lowest order, a function of Ss/Sv . Given that Ss/Sv

is largely a function of L, it should thus form a nearly orthogonal
constraint to that from nuclear masses. Values of tnp have been
measured, typically with 30%–50% errors, for a few dozen
nuclei. More frequently used is the neutron skin thickness rnp,
the difference between the mean square neutron and proton radii,
which is approximately equal to

√
3/5tnp.

A recent study of Sn isotopes (Chen et al. 2010), where dif-
ferential isotopic measurements with fixed Z potentially reduce
errors, produced a correlation band in the Sv–L plane which is
nearly orthogonal to mass-fit correlations (Figure 2). The re-
sults from the Sn isotopes can, approximately, be expressed as
a range of values of the neutron skin thickness of 208Pb, r208

np ,
since numerous theoretical studies have shown them to be highly
correlated (e.g., Reinhard & Nazarewicz 2010).

A number of authors have demonstrated from Hartree–Fock
and Thomas–Fermi studies that r208

np varies linearly with L for a
given value of Sv (see, for example, Furnstahl 2002; Roca-Maza
et al. 2011). However, r208

np can also be shown to vary linearly
with Sv if L is fixed (Furnstahl 2002; Reinhard & Nazarewicz
2010; Chen et al. 2010). In general, r208

np is a function of both Sv

and L, and the high degree of correlation between Sv and L is
responsible for these separate, nearly linear, correlations.

Chen et al. (2010) established a two-dimensional relation,
r208

np (Sv, L), using Skyrme Hartree–Fock calculations of 208Pb
in which most Skyrme parameters were determined from nuclear
matter properties, and Sv and L were then systematically varied.

4
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Fig. 2 Energy per nucleon
vs. baryon number density of
nuclear matter for three
values of the neutron excess
parameter ı. Calculations
performed for SLy4 model of
effective nucleon interaction.
Figure 5.1 from Haensel et al.
(2007)

corresponds to the neutron-drip point in a neutron star crust and to a central core of
a newly born protoneutron star. Finally, ı D 1 curve corresponds to PNM. Minima
of the E.nb/ curves are indicated by filled dots. The many-body model used yields
ns D 0:16 fm!3 and Es D !16:0 MeV.

With increasing ı, the self-bound state becomes shallower, the binding energy
Bs.ı/ decreases, and ns.ı/ decreases, too. Eventually, the bound state of asymmetric
nuclear matter disappears.

As it is clear from Fig. 2, Bs D !Es is the maximum binding energy per
nucleon in nuclear matter. The binding energy per nucleon B.A; ı/ in a self-bound
(i.e., bound under zero pressure) system of A nucleons with a nonzero neutron
excess parameter ı will be smaller than Bs. The value of B.A; ı/ will tend to
Bs from below, if A !! 1, ı !! 0, and the Coulomb forces are switched
off. Simultaneously, the mean number density of the system will tend to ns. This
property, resulting from the interplay of the short-distance repulsion and the long-
distance attraction in the nucleon-nucleon interaction, is called saturation; Bs is
called the binding energy at saturation, and ns is the saturation density.

Consider the case of small ı and small ! " .nb ! ns/=ns, characteristic of
terrestrial nuclei. Using nb D ns.1 C !/, and keeping up to the cubic terms in
small parameters, we get

E.nb; ı/ ' Es C Esym ı2 C 1

9
K!2 C 1

3
Lı2! ; (1)

where Esym and K are, respectively, the nuclear symmetry energy and incompress-
ibility, and L is the slope parameter of the symmetry energy. The values extracted
from the experimental nuclear physics data are ns ' 0:16 fm!3, Es ' !16:0 MeV,
K ' 230 ˙ 40 MeV, Esym ' 32 ˙ 2 MeV, and L ' 55 ˙ 15 MeV.

nb = nn + np δ =
nn − np

nb
η =

n − nsat

nsat

E(nb, δ) ≃ Esat + Jδ2 +
1
3

Lδ2η +
1
9

Kη2

J -symmetry energy, L- slope, K- incompressibility
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Fig. 2. Mass–radius curves for a variety of popular EOSs (see Ref. [38] for descriptions). The green shaded region in the upper left is causally-excluded; the
green shaded region in the lower-right is excluded by the most rapidly spinning pulsar. Black curves are hadronic EOSs; green curves are for strange quark
matter configurations. Lines of fixed R1 = R/

p
1 � 2� are indicated as orange curves. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

discovery of stars with masses much larger than seemed likely a decade ago, so that this constraint is no longer academic
but practical.

Neutron stars are so compact that general relativity (GR) is essential in determining their structure. Nevertheless, some
useful insights can be obtained by considering the spherical Newtonian structure equations:

dp
dr

= �Gm⇢

r2
,

dm
dr

= 4⇡⇢r2, (1)

where ⇢ is the mass density and p is the pressure. Above, m represents the mass interior to the radius r . It is necessary to
supply the EOS p(⇢) to solve these equations. It is useful to consider the relations that result from assuming a polytropic
relation p ' K⇢� for the EOS of the star. K is a constant and � is the constant polytropic exponent. This can be useful when
considering either low-mass or high-mass neutron stars. In the former case, the polytropic formula can be applied tomatter
with densities below the nuclear saturation density ns, wherematter is dominated by the pressure of relativistic degenerate
electrons and � ' 4/3. In the latter case, where the average density is well in excess of ns, a rough approximation is � ⇡ 2.

2.1. Results from dimensional analysis

For a polytrope, dimensional analysis of the structure equations leads to the mass–radius relation

M = �⇠ 2
1 ✓ 0

1(4⇡)�1/(��1)
✓

K�

G(� � 1)

◆1/(2�� ) ✓
R
⇠1

◆(4�3� )/(2�� )

, (2)

where ⇠1 and ✓ 0
1 are constants that depend on � . We therefore find for low-density stars thatM / K 3/2R0, or the total mass

M is independent of the stellar radius R. This is in fact true, as the mass approaches the so-called minimum neutron star
mass, about 0.1 M� as the compactness � = GM/Rc2 ! 0. On the other hand, for high-density stars, we find R / K 1/2M0,
or the radius is independent of the mass. Once again, this is approximately true, at least until the compactness � becomes
large (i.e., � & 1/6) and GR can no longer be ignored. In both cases, the value of K is quantitatively important in determining
either the limiting mass or radius. These features are apparent in theM–R curves displayed in Fig. 2.

The close connection between neutron star radii and K was exploited by Lattimer & Prakash [38] who found
phenomenological correlations between the pressure of neutron star matter at selected densities, p�(n) in units of MeV
fm�3, and the radius of a typical 1.4 M� star1

R1.4 = (9.52 ± 0.49)[p�(ns)]1/4 km; R1.4 = (5.68 ± 0.14)[p�(2ns)]1/4 km. (3)

The spread of R1.4 observed in Fig. 2, between 9 and 15 km, reflects uncertainties in the pressure. Fig. 2 shows, however, that
the spread of R1.4 becomes smaller (11–15 km) if EOSs are required to support masses of 2.0 M� rather than 1.4 M�. We
will show that the radius uncertainty is further reduced due to additional theoretical and experimental constraints.

1 The displayed correlations, and one standard deviation errors, are revisions [39] that incorporate only those EOSs that can support observed neutron
star masses.
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matter configurations. Lines of fixed R1 = R/
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discovery of stars with masses much larger than seemed likely a decade ago, so that this constraint is no longer academic
but practical.

Neutron stars are so compact that general relativity (GR) is essential in determining their structure. Nevertheless, some
useful insights can be obtained by considering the spherical Newtonian structure equations:

dp
dr

= �Gm⇢

r2
,

dm
dr

= 4⇡⇢r2, (1)

where ⇢ is the mass density and p is the pressure. Above, m represents the mass interior to the radius r . It is necessary to
supply the EOS p(⇢) to solve these equations. It is useful to consider the relations that result from assuming a polytropic
relation p ' K⇢� for the EOS of the star. K is a constant and � is the constant polytropic exponent. This can be useful when
considering either low-mass or high-mass neutron stars. In the former case, the polytropic formula can be applied tomatter
with densities below the nuclear saturation density ns, wherematter is dominated by the pressure of relativistic degenerate
electrons and � ' 4/3. In the latter case, where the average density is well in excess of ns, a rough approximation is � ⇡ 2.

2.1. Results from dimensional analysis

For a polytrope, dimensional analysis of the structure equations leads to the mass–radius relation

M = �⇠ 2
1 ✓ 0

1(4⇡)�1/(��1)
✓

K�

G(� � 1)

◆1/(2�� ) ✓
R
⇠1

◆(4�3� )/(2�� )

, (2)

where ⇠1 and ✓ 0
1 are constants that depend on � . We therefore find for low-density stars thatM / K 3/2R0, or the total mass

M is independent of the stellar radius R. This is in fact true, as the mass approaches the so-called minimum neutron star
mass, about 0.1 M� as the compactness � = GM/Rc2 ! 0. On the other hand, for high-density stars, we find R / K 1/2M0,
or the radius is independent of the mass. Once again, this is approximately true, at least until the compactness � becomes
large (i.e., � & 1/6) and GR can no longer be ignored. In both cases, the value of K is quantitatively important in determining
either the limiting mass or radius. These features are apparent in theM–R curves displayed in Fig. 2.

The close connection between neutron star radii and K was exploited by Lattimer & Prakash [38] who found
phenomenological correlations between the pressure of neutron star matter at selected densities, p�(n) in units of MeV
fm�3, and the radius of a typical 1.4 M� star1

R1.4 = (9.52 ± 0.49)[p�(ns)]1/4 km; R1.4 = (5.68 ± 0.14)[p�(2ns)]1/4 km. (3)

The spread of R1.4 observed in Fig. 2, between 9 and 15 km, reflects uncertainties in the pressure. Fig. 2 shows, however, that
the spread of R1.4 becomes smaller (11–15 km) if EOSs are required to support masses of 2.0 M� rather than 1.4 M�. We
will show that the radius uncertainty is further reduced due to additional theoretical and experimental constraints.

1 The displayed correlations, and one standard deviation errors, are revisions [39] that incorporate only those EOSs that can support observed neutron
star masses.

R1.4 ≃ (12.1 ± 1.1) km
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1. Introduction

Gerry was long interested in the equation of state (EOS) of dense matter and supernovae, and formulated many ideas
concerning the mechanism underlying core-collapse supernovae. Gerry Brown was not one who would let a crisis or
controversy in nuclear physics pass him by. Whether the dense matter EOS was soft or stiff was a debate he plunged into
with great gusto. To enable a core-collapse supernova explosion through the prompt-shock and reboundmechanism, Gerry
argued [1] that the EOS at nuclear densities had to be soft with an incompressibility parameter, Ks, of isospin symmetric
nuclear matter much smaller (⇠110 MeV) than 220 ± 30 MeV inferred from the analysis of giant monopole resonances by
Blaizot et al. [2]. Thinking today supports the notion that neutrinos and multi-dimensional effects are required to ensure
successful explosions. While he also famously argued for a relatively soft nuclear EOS to explain why no neutron star has
yet been detected in the remnant of SN 1987A, observations of pulsars today indicate that the maximummass is quite large
[3,4]. In his later years, author JML would try to provoke him (in retaliation for phone calls, during Notre Dame football
games, purporting to discuss physics) with tales of ever larger neutron star mass measurements. Ironically, it now
appears that uncertainties in the dense matter EOS have little to do with uncertainties in the core-collapse supernova
mechanism.

Nevertheless, he does not appear to have been completely wrong about softness in the EOS. While experiments [5–7]
indicate that symmetric matter has a larger incompressibility than he favored, pure neutronmatter, which is much closer to
neutron star matter than is symmetric matter, seems to be relatively soft near the nuclear saturation density. Calculations
of the properties of pure neutron matter, as well as experimental results concerning the symmetry properties of dense
matter gleaned from experiments measuring binding energies, neutron skin thicknesses and giant resonances, support this
perspective. But to attain a large maximum mass, the EOS at densities beyond twice the nuclear saturation density must
become very stiff. Gerry would have been fascinated with this development.

Gerry was also intimately involved in great debates in the late 1970s concerning thermal effects in dense matter, and
strongly argued, with Hans Bethe, that the importance of excited states in nuclei had been underappreciated. Historical
comments concerning his work, which culminated in the ‘‘BBAL’’ [8] paper, are contained in articles appearing in the recent
Nuclear Physics Memorial Volume [9,10]. In this case, of course, he was correct. The role of thermal effects has taken on new
emphasis with the realization that high entropies and temperatures exist in hypermassive neutron stars, the metastable,
differentially rotating hot configurations which are the aftermath of some neutron star mergers. Their lifetimes before
gravitational collapse to black holes ensues crucially depend on the specific heat of the hot matter as well as on neutrino
emissivities which determine cooling rates and timescales for dissipation of differential rotation.

In the 1980s data about collective flow from 0.5 to 2 GeV per nucleon heavy-ion collisions at the Bevalac became
available. Initial theoretical analyses indicated that the EOS at near-nuclear and supra-nuclear densities was very stiff with
an incompressibility parameter close to 400 MeV. In many works, even larger values were predicted. Gerry and author MP
struggled a lot to reconcile such large values with the much lower values suggested by the analyses of the giant resonances
data and theoretical calculations of the EOS. MP’s first paper with Gerry [11] was a tortuous experience insofar as none
of the authors was convinced about the resolution of the problem on hand. We argued fiercely about how the paper was
to be written. After many drafts, Gerry relegated text of MP’s detailed calculations to the appendices, and replaced the
main text with many conflicting ideas. The paper took over a year to get published with many revisions after the referee’s
comments. One of those ideas, that the momentum dependent interactions could be at the root of the solution, turned out
to be right and has stood the test of time. As always, Gerry was generous to competitors (behind their backs, of course);
the note added in proof acknowledges preprints by Aichelin et al. [12] and Gale et al. [13] which were submitted after the
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Fig. 8. The correlations between radii of 1.4M� stars, R1.4, and p1 (left panel) and p(ns) (right panel). Parameters producing causal configurations capable
of supporting 1.97 M� are indicated as black circles; all others are indicated by teal circles. The solid (dashed) lines indicate quadratic (linear) fits to the
black circles. The dotted curves show the correlations inferred from Eq. (3) [39] with 1� errors.

Fig. 9. Left panel: Allowed pressures as a function of energy density permitted by the assumed constraints on the low-density EOS, causality, and selected
values for Mmax . Red crosses indicate the central conditions for surviving EOSs. The black, yellow, blue and red lines are for Mmax = 1.97 M� , 2.1 M� ,
2.3 M� , and 2.5 M� , respectively. Right panel: Allowed masses and radii for selected values of Mmax . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

limits must be found numerically from TOV integrations, which indicate that the effective lower limit to p2 is approximately
100 MeV fm�3 for virtually all realistic choices of p1 (Fig. 7).

The result of each TOV integration with a different EOS (i.e., different combinations of p1, p2 and p3) is indicated by a
symbol in Fig. 7 (many parameter combinations yield nearly identical configurations and cannot be distinguished). It is clear
that causal configurations capable of supporting Mmax = 1.97 M� must have p2 & 100 MeV fm�3, and if Mmax = 2.1 M�,
p2 & 125 MeV fm�3. On the other hand, the specific value of p3 plays relatively little role as long as p2 < p3 < p3,max leads
to causal configurations of the required mass.

As expected, neutron star radiiwill bemost sensitive to the parameter p1. Values ofR1.4 for different choices of parameters
are shown in Fig. 8 as functions of either p1 or p(ns) = p1(p(ns)/p1)�1 . The spread of radius values for a given p1 or p(ns)
shows the influence of variations in p2 and p3 and is small. We compare the obtained correlations with the formulae earlier
obtained by Ref. [39], Eq. (3) in Fig. 8. The radii obtained here tend to be somewhat smaller due to the ceiling placed on p1
from neutron matter calculations.

The restrictions of causality and large maximum masses severely restrict the allowed EOSs. The left panel of Fig. 9
shows boundaries in the pressure–energy density plane with different assumptions forMmax permitted by causality and the
assumed low-density EOS for the crust and for neutron matter. ForMmax = 1.97M�, the maximum uncertainty in pressure
for a given energy density is no larger than a factor of 3 (which occurs near n1), and is slightly larger than a factor of 2 near
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ABSTRACT
The maximum mass of a nonrotating neutron star, "TOV, plays a very important role in deciphering the structure and composition
of neutron stars and in revealing the equation of state (EOS) of nuclear matter. Although with a large-error bar, the recent mass
estimate for the black-widow binary pulsar PSR J0952-0607, i.e., " = 2.35 ± 0.17 "�, provides the strongest lower bound
on "TOV and suggests that neutron stars with very large masses can in principle be observed. Adopting an agnostic modelling
of the EOS, we study the impact that large masses have on the neutron-star properties. In particular, we show that assuming
"TOV & 2.35 "� constrains tightly the behaviour of the pressure as a function of the energy density and moves the lower bounds
for the stellar radii to values that are significantly larger than those constrained by the NICER measurements, rendering the
latter ine�ective in constraining the EOS. We also provide updated analytic expressions for the lower bound on the binary tidal
deformability in terms of the chirp mass and show how larger bounds on "TOV lead to tighter constraints for this quantity. In
addition, we point out a novel quasi-universal relation for the pressure profile inside neutron stars that is only weakly dependent
from the EOS and the maximum-mass constraint. Finally, we study how the sound speed and the conformal anomaly are
distributed inside neutron stars and show how these quantities depend on the imposed maximum-mass constraints.

Key words: neutron stars – equation of state – sound speed

1 INTRODUCTION

The maximum mass beyond which a static relativistic star collapses to
a black hole, "TOV, is determined by the solution of the equilibrium
equations for a self-gravitating fluid configuration – the so-called
Tolmann-Oppenheimer-Volko� (TOV) equations – once an equation
of state (EOS), that is a relation between the pressure and the energy
density ?(4), is specified. Given the intimate relation between the
EOS and the maximum mass, the knowledge of the latter has always
been considered an essential tool to access the former.

Chiral E�ective Theory (CET) calculations (Hebeler et al. 2013;
Gandolfi et al. 2019; Keller et al. 2021; Drischler et al. 2020) con-
strain the EOS at baryon densities = below and around nuclear satu-
ration density =B = 0.16 fm�3. At densities much higher than those
realised inside neutron stars (= � =B), matter is in a state of decon-
fined quarks and gluons and the EOS of Quantum Chromodynam-
ics (QCD) becomes accessible to perturbation theory (Freedman &
McLerran 1977; Vuorinen 2003; Gorda et al. 2021a). Between these
limits, at densities a few times larger than =B , such as those realised
in neutron-star cores, these methods are not applicable, hence our
knowledge about even the most basic neutron-star properties like
their mass-radius relation and in particular their maximum mass is
incomplete. In this regime the currently available theoretical options
are specific-model building (see, e.g., Bastian 2021; Demircik et al.
2021a; Ivanytskyi & Blaschke 2022, for some recent works), and
model agnostic EOS-samplings (see, e.g., Greif et al. 2019; An-

¢ E-mail: ecker@itp.uni-frankfurt.de (CE)

nala et al. 2020; Dietrich et al. 2020; Altiparmak et al. 2022, for
some recent attempts), for which CET and QCD provide important
constraints (Komoltsev & Kurkela 2022; Gorda et al. 2022; Soma-
sundaram et al. 2022).

In addition, a number of EOS independent quasi-universal rela-
tions have been identified among various neutron-star properties,
either when isolated (see, e.g., Yagi & Yunes 2013) or when in
binary systems (see, e.g., Baiotti & Rezzolla 2017). These relations
provide a useful tool to break the degeneracy between existing uncer-
tainties in the EOS and di�erences between General Relativity and
alternative theories of gravity. Quasi-universal relations have also
been found to describe the critical mass of equilibrium models with
varying angular momentum, that is, the maximum mass along the
stability line of uniformly rotating configurations. In turn, this rela-
tion allows one to tightly constrain the ratio between the maximum
mass of uniformly rotating and static stars made of purely nucleonic
matter, i.e., "max = 1.203+0.022

�0.022 "TOV (Breu & Rezzolla 2016) and
to only slightly larger values when accounting for a phase transition
to quark matter (Bozzola et al. 2019; Demircik et al. 2021b).

On the observational side, direct mass measurements of " ⇡
2 "� (Antoniadis et al. 2013; Cromartie et al. 2019; Fonseca et al.
2021), combined with mass and radius measurements by the NICER
experiment (Riley et al. 2019; Miller et al. 2019; Miller et al. 2021;
Riley et al. 2021) and with measurements of the binary tidal deforma-
bility ⇤̃ from the binary neutron-star merger GW170817 (The LIGO
Scientific Collaboration et al. 2019), have provided until recently the
most important benchmarks for the EOS at densities beyond =B . The
direct mass measurement of the heavy companion in the black-widow
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A B S T R A C T 
The maximum mass of a non-rotating neutron star, M TOV , plays a very important role in deciphering the structure and composition 
of neutron stars and in revealing the equation of state (EOS) of nuclear matter. Although with a large-error bar, the recent mass 
estimate for the black-widow binary pulsar PSR J0952–0607, i.e. M = 2.35 ± 0.17 M !, provides the strongest lower bound on 
M TOV and suggests that neutron stars with very large masses can, in principle, be observed. Adopting an agnostic modelling 
of the EOS, we study the impact that large masses have on the neutron-star properties. In particular, we show that assuming 
M TOV ! 2 . 35 M ! constrains tightly the behaviour of the pressure as a function of the energy density and mo v es the lower bounds 
for the stellar radii to values that are significantly larger than those constrained by the NICER measurements, rendering the 
latter inef fecti ve in constraining the EOS. We also provide updated analytic expressions for the lower bound on the binary tidal 
deformability in terms of the chirp mass and show how larger bounds on M TOV lead to tighter constraints for this quantity. In 
addition, we point out a no v el quasi-univ ersal relation for the pressure profile inside neutron stars that is only weakly dependent 
on the EOS and the maximum-mass constraint. Finally, we study how the sound speed and the conformal anomaly are distributed 
inside neutron stars and show how these quantities depend on the imposed maximum-mass constraints. 
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1  I N T RO D U C T I O N  
The maximum mass beyond which a static relativistic star collapses 
to a black hole, M TOV , is determined by the solution of the equilibrium 
equations for a self-gravitating fluid configuration – the so-called 
Tolmann–Oppenheimer–Volkoff (TOV) equations – once an equa- 
tion of state (EOS), that is a relation between the pressure and the 
energy density p ( e ), is specified. Given the intimate relation between 
the EOS and the maximum mass, the knowledge of the latter has 
al w ays been considered an essential tool to access the former. 

Chiral ef fecti ve theory (CET) calculations (Hebeler et al. 2013 ; 
Gandolfi et al. 2019 ; Drischler et al. 2020 ; Keller et al. 2021 ) con- 
strain the EOS at baryon densities n below and around nuclear satura- 
tion density n s = 0 . 16 fm −3 . At densities much higher than those re- 
alized inside neutron stars ( n # n s ), matter is in a state of deconfined 
quarks, and gluons and the EOS of quantum chromodynamics (QCD) 
becomes accessible to perturbation theory (Freedman & McLerran 
1977 ; Vuorinen 2003 ; Gorda et al. 2021a ). Between these limits, at 
densities a few times larger than n s , such as those realized in neutron- 
star cores, these methods are not applicable, hence our knowledge 
about even the most basic neutron-star properties like their mass–
radius relation and, in particular, their maximum mass is incomplete. 
In this regime, the currently available theoretical options are specific- 
model building (see, e.g. Bastian 2021 ; Demircik, Ecker & J ̈arvinen 
2022 ; Ivan ytsk yi & Blaschke 2022 , for some recent works), and 
! E-mail: ecker@itp.uni-frankfurt.de 

model agnostic EOS-samplings (see, e.g. Greif et al. 2019 ; Annala 
et al. 2020 ; Dietrich et al. 2020 ; Jiang et al. 2020 ; Altiparmak, Ecker 
& Rezzolla 2022 , for some recent attempts), for which CET and QCD 
provide important constraints (Gorda, Komoltsev & Kurkela 2022 ; 
Komoltsev & Kurkela 2022 ; Somasundaram, Tews & Margueron 
2022 ). 

In addition, a number of EOS independent quasi-universal rela- 
tions have been identified among various neutron-star properties, 
either when isolated (see, e.g. Yagi & Yunes 2013 ) or when in binary 
systems (see, e.g. Baiotti & Rezzolla 2017 ). These relations provide a 
useful tool to break the de generac y between existing uncertainties in 
the EOS and differences between General Relativity and alternative 
theories of gravity. Quasi-universal relations have also been found 
to describe the critical mass of equilibrium models with varying 
angular momentum, that is, the maximum mass along the stability 
line of uniformly rotating configurations. In turn, this relation allows 
one to tightly constrain the ratio between the maximum mass of 
uniformly rotating and static stars made of purely nucleonic matter, 
i.e. M max = 1 . 203 + 0 . 022 

−0 . 022 M TOV (Breu & Rezzolla 2016 ) and to only 
slightly larger values when accounting for a phase transition to quark 
matter (Bozzola et al. 2019 ; Demircik, Ecker & J ̈arvinen 2021 ). 

On the observational side, direct mass measurements of M ≈
2 M ! (Antoniadis et al. 2013 ; Cromartie et al. 2019 ; Fonseca 
et al. 2021 ), combined with mass and radius measurements by the 
NICER experiment (Miller et al. 2019 ; Riley et al. 2019 ; Miller 
et al. 2021 ; Riley et al. 2021 ) and with measurements of the 
binary tidal deformability ˜ " from the binary neutron-star merger 
GW170817 (The LIGO Scientific Collaboration et al. 2019 ), have 
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A B S T R A C T 
The maximum mass of a non-rotating neutron star, M TOV , plays a very important role in deciphering the structure and composition 
of neutron stars and in revealing the equation of state (EOS) of nuclear matter. Although with a large-error bar, the recent mass 
estimate for the black-widow binary pulsar PSR J0952–0607, i.e. M = 2.35 ± 0.17 M !, provides the strongest lower bound on 
M TOV and suggests that neutron stars with very large masses can, in principle, be observed. Adopting an agnostic modelling 
of the EOS, we study the impact that large masses have on the neutron-star properties. In particular, we show that assuming 
M TOV ! 2 . 35 M ! constrains tightly the behaviour of the pressure as a function of the energy density and mo v es the lower bounds 
for the stellar radii to values that are significantly larger than those constrained by the NICER measurements, rendering the 
latter inef fecti ve in constraining the EOS. We also provide updated analytic expressions for the lower bound on the binary tidal 
deformability in terms of the chirp mass and show how larger bounds on M TOV lead to tighter constraints for this quantity. In 
addition, we point out a no v el quasi-univ ersal relation for the pressure profile inside neutron stars that is only weakly dependent 
on the EOS and the maximum-mass constraint. Finally, we study how the sound speed and the conformal anomaly are distributed 
inside neutron stars and show how these quantities depend on the imposed maximum-mass constraints. 
Key words: dense matter – equation of state – methods: numerical – stars: neutron. 

1  I N T RO D U C T I O N  
The maximum mass beyond which a static relativistic star collapses 
to a black hole, M TOV , is determined by the solution of the equilibrium 
equations for a self-gravitating fluid configuration – the so-called 
Tolmann–Oppenheimer–Volkoff (TOV) equations – once an equa- 
tion of state (EOS), that is a relation between the pressure and the 
energy density p ( e ), is specified. Given the intimate relation between 
the EOS and the maximum mass, the knowledge of the latter has 
al w ays been considered an essential tool to access the former. 

Chiral ef fecti ve theory (CET) calculations (Hebeler et al. 2013 ; 
Gandolfi et al. 2019 ; Drischler et al. 2020 ; Keller et al. 2021 ) con- 
strain the EOS at baryon densities n below and around nuclear satura- 
tion density n s = 0 . 16 fm −3 . At densities much higher than those re- 
alized inside neutron stars ( n # n s ), matter is in a state of deconfined 
quarks, and gluons and the EOS of quantum chromodynamics (QCD) 
becomes accessible to perturbation theory (Freedman & McLerran 
1977 ; Vuorinen 2003 ; Gorda et al. 2021a ). Between these limits, at 
densities a few times larger than n s , such as those realized in neutron- 
star cores, these methods are not applicable, hence our knowledge 
about even the most basic neutron-star properties like their mass–
radius relation and, in particular, their maximum mass is incomplete. 
In this regime, the currently available theoretical options are specific- 
model building (see, e.g. Bastian 2021 ; Demircik, Ecker & J ̈arvinen 
2022 ; Ivan ytsk yi & Blaschke 2022 , for some recent works), and 
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model agnostic EOS-samplings (see, e.g. Greif et al. 2019 ; Annala 
et al. 2020 ; Dietrich et al. 2020 ; Jiang et al. 2020 ; Altiparmak, Ecker 
& Rezzolla 2022 , for some recent attempts), for which CET and QCD 
provide important constraints (Gorda, Komoltsev & Kurkela 2022 ; 
Komoltsev & Kurkela 2022 ; Somasundaram, Tews & Margueron 
2022 ). 

In addition, a number of EOS independent quasi-universal rela- 
tions have been identified among various neutron-star properties, 
either when isolated (see, e.g. Yagi & Yunes 2013 ) or when in binary 
systems (see, e.g. Baiotti & Rezzolla 2017 ). These relations provide a 
useful tool to break the de generac y between existing uncertainties in 
the EOS and differences between General Relativity and alternative 
theories of gravity. Quasi-universal relations have also been found 
to describe the critical mass of equilibrium models with varying 
angular momentum, that is, the maximum mass along the stability 
line of uniformly rotating configurations. In turn, this relation allows 
one to tightly constrain the ratio between the maximum mass of 
uniformly rotating and static stars made of purely nucleonic matter, 
i.e. M max = 1 . 203 + 0 . 022 

−0 . 022 M TOV (Breu & Rezzolla 2016 ) and to only 
slightly larger values when accounting for a phase transition to quark 
matter (Bozzola et al. 2019 ; Demircik, Ecker & J ̈arvinen 2021 ). 

On the observational side, direct mass measurements of M ≈
2 M ! (Antoniadis et al. 2013 ; Cromartie et al. 2019 ; Fonseca 
et al. 2021 ), combined with mass and radius measurements by the 
NICER experiment (Miller et al. 2019 ; Riley et al. 2019 ; Miller 
et al. 2021 ; Riley et al. 2021 ) and with measurements of the 
binary tidal deformability ˜ " from the binary neutron-star merger 
GW170817 (The LIGO Scientific Collaboration et al. 2019 ), have 
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Figure 1. Left Panel: PDFs of the various EOSs constructed, with coloured lines showing the 95%-confidence intervals for the di�erent mass constraints.
Lines with light colours indicate instead the outer boundaries to excluded regions. The blue and green-shaded areas mark the uncertainty of nuclear theory
and perturbative QCD, respectively. Right Panel: The same as in the left panel but for the PDFs of the mass-radius relations. Blue and orange ellipses are
radius measurements of J0030+0451 (Riley et al. 2019; Miller et al. 2019) and of J0740+6620 (Miller et al. 2021; Riley et al. 2021) by the NICER experiment,
respectively. Green and pink areas are mass measurements of J0740+6620 (Fonseca et al. 2021) and J0952-0607 (Romani et al. 2022), respectively. In the bottom
part of the panel is reported slices of the PDF for " = 1.4 "� , with the medians being marked by vertical dotted lines.

Love number, we compute the binary tidal deformability as

⇤̃ :=
16
13

(12"2 + "1) "4
1⇤1 + (12"1 + "2) "4

2⇤2

("1 + "2)5
. (4)

For any choice of "1,2 and '1,2, we then reject those EOSs with
⇤̃ > 720 for a chirp mass Mchirp := ("1"2)3/5 ("1 + "2)�1/5 =
1.186"� and @ := "2/"1 > 0.73 as required for consistency with
LIGO/Virgo data for GW170817 (The LIGO Scientific Collaboration
et al. 2019).

Because the limits on the maximum mass are still rather un-
certain, we perform separate simulations imposing di�erent lower
limits on the maximum mass, namely, we consider "TOV �
2.0, 2.18, 2.35, 2.52 "� , where the first value is motivated by the pul-
sars PSR J0348+0432 (Antoniadis et al. 2013) (" = 2.01±0.04 "�)
and PSR J0740+6620 (Cromartie et al. 2019; Fonseca et al. 2021)
(2.08±0.07 "�), while the last three values correspond to the lower
bound, the median and the upper bound of the uncertainty in the
mass estimate reported by Romani et al. (2022) for PSR J0952-0607
(2.35±0.17 "�). Note that Romani et al. (2022) also reports a more
conservative estimate of "TOV > 2.09 "� , which we also checked;
however because the results are almost indistinguishable from the
case "TOV � 2.0 "� , we do not discuss them here. For each mass-
bound considered, we have constructed ⇡ 106 di�erent neutron star
solutions passing all the QCD and astro constraints.

We remark that in our approach a certain bias inherited from
the way the prior is constructed is unavoidable. In our previous
works (Altiparmak et al. 2022; Ecker & Rezzolla 2022) we first sam-
pled a temporary maximum value for the maximally allowed sound
speed 22

B,max uniformly in the interval [0, 1] and then the various
sound-speed values at the individual matching points for the construc-
tion of the EOS on the range [0, 22

B,max]. This approach guaranteed
a su�cient sampling rate for globally monotonic and sub-conformal
EOS families, which otherwise would be statistically suppressed. Be-
cause here we are not interested in such particular subsets of EOSs,
we can omit the first step and simply sample the individual sound-
speed values between zero and one directly. This approach results in

slightly higher estimates for the sound speed maxima and also slightly
di�erent estimates for neutron-star radii compared to our previous
work. The resulting di�erence for the neutrons star radii '1.4(2.0)
is negligible, being less than 40(200) m, however, larger di�erences
can appear in the PDF of the maximum sound-speed. One way to
mitigate this intrinsic and inevitable bias introduced by the choice
of sampling is to employ a Bayesian analysis. A comparison work
between our approach and a fully Bayesian approach is presently in
progress and will be presented in an upcoming work (Jiang et al.
2022).

Before turning to the results, an important remark is worth mak-
ing. With a spin frequency of 5 = 706 Hz (Romani et al. 2022)
PSR J0952-0607 is the second-fastest-spinning pulsar known. This
raises the question of whether the static approximation assumed in
our analysis is actually justified and if it is not instead necessary to
introduce rotation-induced corrections. To address this question it is
su�cient to consider the approximate but analytic quasi-universal
expression for the critical mass along the dynamical stability line to
gravitational collapse, that is, the value of the maximum mass of a
uniformly rotating star when expressed as a function of the dimen-
sionless angular momentum 9 := �/"2 (Breu & Rezzolla 2016)

"crit
"TOV

= 1 + 02

✓
9

9Kep

◆2
+ 04

✓
9

9Kep

◆4
, (5)

where 9Kep is the Keplerian dimensionless angular momentum
( 9/ 9Kep  1) and the coe�cients have values 02 = 0.1316,
04 = 0.07111. Assuming a Keplerian frequency for PSR J0952-
0607 of 5Kep ⇡ 1.5 kHz (see Table 1 of Demircik et al. (2021b))
and expression (5), it is possible to deduce that, in the case of PSR
J0952-0607, 5 / 5Kep ⇡ 9/ 9Kep . 0.46, so that the corresponding
increase in the maximum mass is less than 0.1 "� , or, equivalently,
less than 4% (see also Fig. 4 of Demircik et al. 2021b). In other
words, given the much larger uncertainties a�ecting the maximum
mass, the use of the static approximation is well justified and has no
relevant impact on our results.
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Figure 1. Left-hand panel: PDFs of the various EOSs constructed, with coloured lines showing the 95 per cent confidence intervals for the different mass 
constraints. Lines with light colours indicate instead the outer boundaries to e xcluded re gions. The blue and green-shaded areas mark the uncertainty of nuclear 
theory and perturbative QCD, respectively. Right-hand panel: The same as in the left-hand panel but for the PDFs of the mass–radius relations. Blue and orange 
ellipses are radius measurements of J0030 + 0451 (Miller et al. 2019 ; Riley et al. 2019 ) and of J0740 + 6620 (Miller et al. 2021 ; Riley et al. 2021 ) by the NICER 
e xperiment, respectiv ely. Green and pink areas are mass measurements of J0740 + 6620 (Fonseca et al. 2021 ) and J0952–0607 (Romani et al. 2022 ), respectively. 
In the bottom part of the panel are reported slices of the PDF for M = 1 . 4 M !, with the medians being marked by vertical dotted lines. 

Table 1. Best-fitting coefficients a , b , c of equation ( 6 ) for the lower 
bound of the binary tidal deformability parameter ˜ ! min . 
M TOV (M !) a b c 
≥2.00 −50 600 4.7 
≥2.18 −45 650 4.6 
≥2.35 −40 750 4.5 
≥2.52 −20 800 4.4 

median estimates (dotted lines) for the radii of a typical neutron star 
with a mass of M = 1 . 4 M ! (see also Table A1 in Appendix A ). 
Larger values for M TOV result in PDFs with significantly smaller 
probability at small radii, while the sharp edge at large radii set 
by the tidal deformability constraint remains essentially unaffected. 
As a result, the median values are shifted to larger values and the 
uncertainties become smaller, which can be seen more explicitly 
from the numbers provided in Table A1 of Appendix A . 

Fig. 2 is used to highlight the impact that a larger mass bound has 
on the behaviour of the binary tidal deformability. In particular, the 
figure shows the upper and lower bounds for ˜ ! as function of the 
chirp mass M chirp . Such bounds were first presented by Altiparmak 
et al. ( 2022 ), where they were shown to follow the simple relation 
˜ ! min(max) = a + b M c chirp . (6) 
This is a particularly important result, since it provides theoretical 
predictions for the upper and lower bounds on ˜ ! , a quantity that 
constrains the EOSs, from M chirp , a quantity that can be (and has 
been) measured to high accuracy from the inspiral waveform of 
binary neutron-star merger events. The coloured lines in Fig. 2 show 
that larger bounds on the maximum mass push ˜ ! min to higher values 
(the coefficients a , b , c used in equation 6 are listed in Table 1 ), while 
the upper bound of Altiparmak et al. ( 2022 ) remains unaffected: 
˜ ! max = −20 + 1800 M 5 chirp . The bottom part of Fig. 2 shows again 
PDF slices for the chirp mass of GW170817, which has been 
measured very accurately to be M chirp = 1 . 188 + 0 . 004 

−0 . 002 . Combining the 
lower limits from all the mass bounds allows us to set the following 

Figure 2. Relation between the chirp mass and binary tidal deformability. 
Coloured lines mark lower bounds of the 95 per cent confidence intervals for 
˜ ! min , while the black line is the upper bound ˜ ! max , which is valid for all 
mass constraints. In the bottom part of the panel are reported the PDF slices 
for the measured chirp mass of GW170817 M chirp = 1 . 186 M !, while the 
medians are again marked with vertical dotted lines. 
range for the lower bound on the binary tidal deformability of 
GW170817 to be ˜ ! min 

1 . 186 ∈ [236 , 301] for M TOV ∈ [2 . 18 , 2 . 52] M !. 
We next move on to assessing how the new high-mass bounds on 

M TOV affect the properties of the spatial distribution of the sound 
speed in the stellar interior. We do this following a recent work 
of ours (Ecker & Rezzolla 2022 ), where we have introduced a 
no v el, scale-independent description of the sound speed in neutron 
stars where the latter is expressed in a unit-cube spanning the 
normalized radius, r / R , and the mass normalized to the maximum 
one, M / M TOV . As shown by Ecker & Rezzolla ( 2022 ), a number of 
interesting results can be deduced from this generic representation. 
In particular, the top-row of panels in Fig. 3 shows the normalized 
radial dependence of the sound speed for M TOV ≥ 2 . 0 −2 . 52 M !
(left- to right-hand panels). Blue and green-shaded areas denote 
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A B S T R A C T 
The maximum mass of a non-rotating neutron star, M TOV , plays a very important role in deciphering the structure and composition 
of neutron stars and in revealing the equation of state (EOS) of nuclear matter. Although with a large-error bar, the recent mass 
estimate for the black-widow binary pulsar PSR J0952–0607, i.e. M = 2.35 ± 0.17 M !, provides the strongest lower bound on 
M TOV and suggests that neutron stars with very large masses can, in principle, be observed. Adopting an agnostic modelling 
of the EOS, we study the impact that large masses have on the neutron-star properties. In particular, we show that assuming 
M TOV ! 2 . 35 M ! constrains tightly the behaviour of the pressure as a function of the energy density and mo v es the lower bounds 
for the stellar radii to values that are significantly larger than those constrained by the NICER measurements, rendering the 
latter inef fecti ve in constraining the EOS. We also provide updated analytic expressions for the lower bound on the binary tidal 
deformability in terms of the chirp mass and show how larger bounds on M TOV lead to tighter constraints for this quantity. In 
addition, we point out a no v el quasi-univ ersal relation for the pressure profile inside neutron stars that is only weakly dependent 
on the EOS and the maximum-mass constraint. Finally, we study how the sound speed and the conformal anomaly are distributed 
inside neutron stars and show how these quantities depend on the imposed maximum-mass constraints. 
Key words: dense matter – equation of state – methods: numerical – stars: neutron. 

1  I N T RO D U C T I O N  
The maximum mass beyond which a static relativistic star collapses 
to a black hole, M TOV , is determined by the solution of the equilibrium 
equations for a self-gravitating fluid configuration – the so-called 
Tolmann–Oppenheimer–Volkoff (TOV) equations – once an equa- 
tion of state (EOS), that is a relation between the pressure and the 
energy density p ( e ), is specified. Given the intimate relation between 
the EOS and the maximum mass, the knowledge of the latter has 
al w ays been considered an essential tool to access the former. 

Chiral ef fecti ve theory (CET) calculations (Hebeler et al. 2013 ; 
Gandolfi et al. 2019 ; Drischler et al. 2020 ; Keller et al. 2021 ) con- 
strain the EOS at baryon densities n below and around nuclear satura- 
tion density n s = 0 . 16 fm −3 . At densities much higher than those re- 
alized inside neutron stars ( n # n s ), matter is in a state of deconfined 
quarks, and gluons and the EOS of quantum chromodynamics (QCD) 
becomes accessible to perturbation theory (Freedman & McLerran 
1977 ; Vuorinen 2003 ; Gorda et al. 2021a ). Between these limits, at 
densities a few times larger than n s , such as those realized in neutron- 
star cores, these methods are not applicable, hence our knowledge 
about even the most basic neutron-star properties like their mass–
radius relation and, in particular, their maximum mass is incomplete. 
In this regime, the currently available theoretical options are specific- 
model building (see, e.g. Bastian 2021 ; Demircik, Ecker & J ̈arvinen 
2022 ; Ivan ytsk yi & Blaschke 2022 , for some recent works), and 
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model agnostic EOS-samplings (see, e.g. Greif et al. 2019 ; Annala 
et al. 2020 ; Dietrich et al. 2020 ; Jiang et al. 2020 ; Altiparmak, Ecker 
& Rezzolla 2022 , for some recent attempts), for which CET and QCD 
provide important constraints (Gorda, Komoltsev & Kurkela 2022 ; 
Komoltsev & Kurkela 2022 ; Somasundaram, Tews & Margueron 
2022 ). 

In addition, a number of EOS independent quasi-universal rela- 
tions have been identified among various neutron-star properties, 
either when isolated (see, e.g. Yagi & Yunes 2013 ) or when in binary 
systems (see, e.g. Baiotti & Rezzolla 2017 ). These relations provide a 
useful tool to break the de generac y between existing uncertainties in 
the EOS and differences between General Relativity and alternative 
theories of gravity. Quasi-universal relations have also been found 
to describe the critical mass of equilibrium models with varying 
angular momentum, that is, the maximum mass along the stability 
line of uniformly rotating configurations. In turn, this relation allows 
one to tightly constrain the ratio between the maximum mass of 
uniformly rotating and static stars made of purely nucleonic matter, 
i.e. M max = 1 . 203 + 0 . 022 

−0 . 022 M TOV (Breu & Rezzolla 2016 ) and to only 
slightly larger values when accounting for a phase transition to quark 
matter (Bozzola et al. 2019 ; Demircik, Ecker & J ̈arvinen 2021 ). 

On the observational side, direct mass measurements of M ≈
2 M ! (Antoniadis et al. 2013 ; Cromartie et al. 2019 ; Fonseca 
et al. 2021 ), combined with mass and radius measurements by the 
NICER experiment (Miller et al. 2019 ; Riley et al. 2019 ; Miller 
et al. 2021 ; Riley et al. 2021 ) and with measurements of the 
binary tidal deformability ˜ " from the binary neutron-star merger 
GW170817 (The LIGO Scientific Collaboration et al. 2019 ), have 
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 the largest bound on the maximum mass coming from PSR  
J0952-0607 decreases the EOS uncertainty at neutron-star  
densities significantly, squeezing the 95%-confidence interval  
for the pressure’s PDF to a narrow band around 𝑝 ≈ 200 MeV/fm3  

at energy densities 𝑒 ≈ 600 MeV/fm3. 

raising the maximum mass bound from 2.0 𝑀⊙ to 2.52 𝑀⊙  

increases systematically the radius of a typical neutron star with  
1.4 𝑀⊙, taking it from a median value 𝑅1.4 =  km  

over to 𝑅1.4 =  km, reducing at the same time  

the 95%-confidence level by almost 50%. 

12.48+0.75
−1.14

12.97+0.28
−0.64
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A B S T R A C T 
The maximum mass of a non-rotating neutron star, M TOV , plays a very important role in deciphering the structure and composition 
of neutron stars and in revealing the equation of state (EOS) of nuclear matter. Although with a large-error bar, the recent mass 
estimate for the black-widow binary pulsar PSR J0952–0607, i.e. M = 2.35 ± 0.17 M !, provides the strongest lower bound on 
M TOV and suggests that neutron stars with very large masses can, in principle, be observed. Adopting an agnostic modelling 
of the EOS, we study the impact that large masses have on the neutron-star properties. In particular, we show that assuming 
M TOV ! 2 . 35 M ! constrains tightly the behaviour of the pressure as a function of the energy density and mo v es the lower bounds 
for the stellar radii to values that are significantly larger than those constrained by the NICER measurements, rendering the 
latter inef fecti ve in constraining the EOS. We also provide updated analytic expressions for the lower bound on the binary tidal 
deformability in terms of the chirp mass and show how larger bounds on M TOV lead to tighter constraints for this quantity. In 
addition, we point out a no v el quasi-univ ersal relation for the pressure profile inside neutron stars that is only weakly dependent 
on the EOS and the maximum-mass constraint. Finally, we study how the sound speed and the conformal anomaly are distributed 
inside neutron stars and show how these quantities depend on the imposed maximum-mass constraints. 
Key words: dense matter – equation of state – methods: numerical – stars: neutron. 

1  I N T RO D U C T I O N  
The maximum mass beyond which a static relativistic star collapses 
to a black hole, M TOV , is determined by the solution of the equilibrium 
equations for a self-gravitating fluid configuration – the so-called 
Tolmann–Oppenheimer–Volkoff (TOV) equations – once an equa- 
tion of state (EOS), that is a relation between the pressure and the 
energy density p ( e ), is specified. Given the intimate relation between 
the EOS and the maximum mass, the knowledge of the latter has 
al w ays been considered an essential tool to access the former. 

Chiral ef fecti ve theory (CET) calculations (Hebeler et al. 2013 ; 
Gandolfi et al. 2019 ; Drischler et al. 2020 ; Keller et al. 2021 ) con- 
strain the EOS at baryon densities n below and around nuclear satura- 
tion density n s = 0 . 16 fm −3 . At densities much higher than those re- 
alized inside neutron stars ( n # n s ), matter is in a state of deconfined 
quarks, and gluons and the EOS of quantum chromodynamics (QCD) 
becomes accessible to perturbation theory (Freedman & McLerran 
1977 ; Vuorinen 2003 ; Gorda et al. 2021a ). Between these limits, at 
densities a few times larger than n s , such as those realized in neutron- 
star cores, these methods are not applicable, hence our knowledge 
about even the most basic neutron-star properties like their mass–
radius relation and, in particular, their maximum mass is incomplete. 
In this regime, the currently available theoretical options are specific- 
model building (see, e.g. Bastian 2021 ; Demircik, Ecker & J ̈arvinen 
2022 ; Ivan ytsk yi & Blaschke 2022 , for some recent works), and 
! E-mail: ecker@itp.uni-frankfurt.de 

model agnostic EOS-samplings (see, e.g. Greif et al. 2019 ; Annala 
et al. 2020 ; Dietrich et al. 2020 ; Jiang et al. 2020 ; Altiparmak, Ecker 
& Rezzolla 2022 , for some recent attempts), for which CET and QCD 
provide important constraints (Gorda, Komoltsev & Kurkela 2022 ; 
Komoltsev & Kurkela 2022 ; Somasundaram, Tews & Margueron 
2022 ). 

In addition, a number of EOS independent quasi-universal rela- 
tions have been identified among various neutron-star properties, 
either when isolated (see, e.g. Yagi & Yunes 2013 ) or when in binary 
systems (see, e.g. Baiotti & Rezzolla 2017 ). These relations provide a 
useful tool to break the de generac y between existing uncertainties in 
the EOS and differences between General Relativity and alternative 
theories of gravity. Quasi-universal relations have also been found 
to describe the critical mass of equilibrium models with varying 
angular momentum, that is, the maximum mass along the stability 
line of uniformly rotating configurations. In turn, this relation allows 
one to tightly constrain the ratio between the maximum mass of 
uniformly rotating and static stars made of purely nucleonic matter, 
i.e. M max = 1 . 203 + 0 . 022 

−0 . 022 M TOV (Breu & Rezzolla 2016 ) and to only 
slightly larger values when accounting for a phase transition to quark 
matter (Bozzola et al. 2019 ; Demircik, Ecker & J ̈arvinen 2021 ). 

On the observational side, direct mass measurements of M ≈
2 M ! (Antoniadis et al. 2013 ; Cromartie et al. 2019 ; Fonseca 
et al. 2021 ), combined with mass and radius measurements by the 
NICER experiment (Miller et al. 2019 ; Riley et al. 2019 ; Miller 
et al. 2021 ; Riley et al. 2021 ) and with measurements of the 
binary tidal deformability ˜ " from the binary neutron-star merger 
GW170817 (The LIGO Scientific Collaboration et al. 2019 ), have 
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TABLE II. The constraints imposed in the Bayesian inference to gen-
erate all sets of models: binding energy per nucleon ✏0, incompress-
ibility K0, symmetry energy Jsym,0 at the nuclear saturation density
⇢0, including an 1� uncertainty; the pressure of pure neutron mat-
ter PNM determined at the densities 0.08, 0.12 and 0.16 fm�3 from
a �EFT calculation [38], with 2 ⇥ N3LO uncertainty in the likeli-
hood, the pressure of PNM is an increasing function of density and
the maximum NS mass above 2M�.

Constraints
Quantity Value/Band Ref

NMP
[MeV]

⇢0 0.153± 0.005 [19]
✏0 �16.1± 0.2 [42]
K0 230± 40 [18, 43]

Jsym,0 32.5± 1.8 [44]

PNM
[MeV fm�3] P (⇢) 2⇥ N3LO [38]

dP/d⇢ > 0
NS mass

[M�] Mmax > 2.0 [45]

parameter. It is important to understand that when sampling
the posterior, the normalization of the log-likelihood, which is
done in equations 12 and 13 is irrelevant. However, to calcu-
late the Bayes evidence it is mandatory and in some cases, it
also reduces the computation time.

To populate the six-dimensional posterior, we use the
nested sampling algorithm, first proposed in Ref. [39] and
suitable for low-dimensional problems. The PyMultinest sam-
pler is invoked to generate samples for the four thousand start-
ing ”n-live” points [40, 41]. There are approximately eighteen
thousand samples we have obtained in each posterior with
⇡ 0.04 acceptance rate.

IV. RESULTS

In the following, we examine the posterior probability dis-
tributions of the RMF model parameters we have adapted for
the purpose of this work, namely g�, g!, g%, b, c, ⇠, and ⇤!

as briefly outlined in Sec. III. Our Bayesian setup for the RMF
model parameters includes the uniform (”un-informative”)
prior as discussed in the earlier section. We first perform a
Bayesian inference with prior Set 0, as given in Table I, im-
posing the constraints given in Table II. Besides the conditions
used in [6], the PNM condition was implemented with hard
cuts, and an extra constraint was introduced: it was imposed
that the PNM pressure is an increasing function of the den-
sity. This last condition his necessary because this behavior
is physically justified but the inference process may originate
models that satisfy all the other constraints except this one. In
Fig. 1 the corner plot for the posteriors of the parameters g� ,
g! , g⇢, B, C, ⇤! and ⇠ is shown. The parameters B and C
are b⇥ 103 and c⇥ 103, respectively.

Some comments are in order: a) some models appear at
large g� , g! and ⇠ and small ⇤! . It is the value of ⇠ that de-
fines this subset, and, therefore, in order to better understand

FIG. 1. Corner plot for the posteriors of the parameters g� , g! , g⇢,
B = b ⇥ 103, C = c ⇥ 103, ⇤! and ⇠ of the RMF model used
in the present study obtained using the uniform priors defined in Ta-
ble I. The vertical lines represent the 90% credible intervals (CIs),
and the light and dark intensities represent the 1�, 2�, and 3� CIs,
respectively.

FIG. 2. Corner plot for the three sets of models, set 1 with ⇠ 2
[0, 0.004] (solid black lines), set 2 with 0⇠ 2 [0.004, 0.015] (red)
and set 3 with ⇠ 2 [0.015, 0.04] (green), comparing the posteriors of
the parameters g� , g! , g⇢, B = b⇥103, C = c⇥103, and ⇤! of the
RMF model used in present study. The vertical lines represent the
68% CIs, and the different intensities, from dark to light, represent
the 1�, 2�, and 3� CIs, respectively.
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[0, 0.004] (solid black lines), set 2 with 0⇠ 2 [0.004, 0.015] (red)
and set 3 with ⇠ 2 [0.015, 0.04] (green), comparing the posteriors of
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FIG. 4. Corner plot for the three sets of models with ⇠ 2 [0, 0.004] (solid black lines), ⇠ 2 [0.004, 0.015] (red) and ⇠ 2 [0.015, 0.04] (green)
comparing the respective nuclear matter properties, in particular, the binding energy e0, incompressibility K0, skewness Q0 and curtosis Z0 at
saturation that characterize symmetric nuclear matter and symmetry energy Jsym,0, its slope Lsym,0, curvature Ksym,0, skewness Qsym,0 and
curtosis Zsym at saturation that characterizes the symmetry energy. The vertical lines represent the 68% CIs, and the light and dark intensities
represent the 1�, 2�, and 3� CIs, respectively.
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FIG. 4. Corner plot for the three sets of models with ⇠ 2 [0, 0.004] (solid black lines), ⇠ 2 [0.004, 0.015] (red) and ⇠ 2 [0.015, 0.04] (green)
comparing the respective nuclear matter properties, in particular, the binding energy e0, incompressibility K0, skewness Q0 and curtosis Z0 at
saturation that characterize symmetric nuclear matter and symmetry energy Jsym,0, its slope Lsym,0, curvature Ksym,0, skewness Qsym,0 and
curtosis Zsym at saturation that characterizes the symmetry energy. The vertical lines represent the 68% CIs, and the light and dark intensities
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FIG. 7. The 90% CI region for the sets: ⇠ 2 [0, 0.004] (black dot), ⇠ 2 [0.004, 0.015] (salmon), and ⇠ 2 [0.015, 0.04] (green) derived using
the conditional probabilities P (R|M) (left) and P (⇤|M) (right). The gray zones in the left panel indicate the 90% (solid) and 50% (dashed)
CI for the binary components of the GW170817 event [53], for the 1� (68%) credible zone of the 2-D posterior distribution in mass-radii
domain from millisecond pulsar PSR J0030+0451 (cyan and yellow) [46, 47] as well as PSR J0740 + 6620 (violet) [48, 49] are shown for the
NICER x-ray data. The horizontal (radius) and vertical (mass) error bars reflect the 1� credible interval derived for the same NICER data’s
1-D marginalized posterior distribution. The blue bars depict the radius of PSR J0740+6620 at 2.08M� (left panel) and its tidal deformability
at 1.36 M� (right panel) [54].

FIG. 8. The Probability distribution of combined tidal deformability
⇤̃ in a Binary is plotted for a given chirp mass Mchirp = 1.186 M�
and marginalized over NS mass ratio q = m1/m2 obtained in Set 1,
2 and 3. The median and 90% CI for ⇤̃ are 471+163

�71 , 516+166
�84 , and

626+154
�132 for Set 1, 2 and 3 , respectively.

tributions that spread above the 720 limits obtained from [54].

In Fig. 9, we plot the �-equilibrium pressure as a func-
tion of the baryonic density for the three sets (⇠ < 0.004,

FIG. 9. Pressure versus the baryonic number density for the three
scenarios ⇠ 2 [0, 0.004] (dark grey), ⇠ 2 [0.004, 0.015] (salmon)
and ⇠ 2 [0.015, 0.04] (green). Also shown is the band predicted
from the GW170817 event (hatched grey).

0.004 < ⇠ < 0.015 and ⇠ > 0.015), together with the pre-
vision obtained from GW170817 [59]. All models fall inside
the GW170817 band. However, their behavior can be distin-

10

guished: a smaller ⇠ implies a softer EOS at lower densities,
harder at high densities, and the other way around.

FIG. 10. The symmetry energy versus the baryonic number density
for the three sets with ⇠ 2 [0, 0.004] (dark grey), ⇠ 2 [0.004, 0.015]
(salmon), and ⇠ 2 [0.015, 0.04] are plotted (green). The constraint
depicted from the IAS analysis is also illustrated by the light sky
region.

FIG. 11. A comparison of the proton, electron, and muon frac-
tions versus the baryonic density in the three different scenarios:
⇠ 2 [0, 0.004] (dark grey), ⇠ 2 [0.004, 0.015] (salmon), and
⇠ 2 [0.015, 0.04] (green).

In Fig. 10, the symmetry energy is represented for the three
scenarios considered in our study. We conclude that the larger
⇠ the stiffer is the symmetry energy, favoring larger proton
fractions as seen in Fig. 11. As referred in Sec. II, a nonzero
⇠ gives rise to a larger % effective mass, Eq. (7), therefore,
having a direct influence on the strength of the % field. The
!-field is proportional to the baryonic number density ⇢ if

FIG. 12. The median and 90% credible interval of the square of
sound velocity (c2s) as a function of baryon density are shown for
⇠ 2 [0, 0.004] (black dot), ⇠ 2 [0.004, 0.015] (salmon), and ⇠ 2
[0.015, 0.04], respectively (green).

{⇠ = 0}, while for a nonzero ⇠, ! increases with a smaller
power of ⇢. So the larger the value of ⇠ the smaller the % effec-
tive mass and the larger the % field. A large %-field gives rise
to a smaller isospin asymmetry, i.e. larger proton fractions
will occur. However, since larger proton fractions favor the
direct Urca (DUrca) process inside NSs with smaller masses,
the different scenarios represented by the three sets may be
distinguished by their cooling properties.

Also very interesting is the analysis of the speed of sound
behavior for the three sets. While for the ⇠ < 0.004 set,
the speed of sound increases monotonically with the baryonic
density, this is not so for the ⇠ > 0.015 set, see Fig. 12: in
this case, the speed of sound square attains a maximum below
0.45c2 at ⇢ ⇠ 4⇢0 and then decreases smoothly. The average
behavior of the set with 0.004 < ⇠ < 0.015 shows an interme-
diate behavior as expected. In this last case for the densities
plotted in Fig. 11, the speed of sound has stabilized just above
0.5c2 .

Finally, we study the correlations between the different
quantities considered, in particular, model parameters, nuclear
matter properties, and neutron stars properties, see Fig. 13
where the Kendall rank correlation coefficients are shown for
set 0. The strongest correlations obtained with coefficients
of the order of 85% or above are between: a) g� and g! for
which 85% was determined. The correct description of the
binding energy strongly constrain these two parameters; b) the
central baryonic density and energy density of the maximum
mass star with the corresponding star radius, respectively, -
87% and -92%. This correlation was referred in [65] and will
be discussed below; c) the speed of sound in the center of the
maximum mass star with the parameter ⇠, -90%. This correla-
tion reflects the fact that the parameter ⇠ determines the stiff-
ness of the EoS at high densities; d) the gravitational mass
of the maximum mass star with the corresponding baryonic
mass, 92%, and the central baryonic density with the energy
density of the maximum mass star, also 92%.

As discussed above, the correlation coefficient between the
central density of the maximum mass star ⇢c and its radius
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FIG. 5. Corner plot for the three sets of models with ⇠ 2 [0, 0.004]
(solid black lines), ⇠ 2 [0.004, 0.015] (red) and ⇠ 2 [0.015, 0.04]
(green) comparing the respective NS properties, in particular, the
gravitational and baryonic maximum masses Mmax and MB,max,
the square of the speed of sound, the central baryonic density of the
maximum mass configuration, and the radius and dimensionless tidal
deformability of a 1.4M� star. The vertical lines represent the 68%
CIs, and the light and dark intensities represent the 1�, 2�, and 3�
CIs, respectively.

BMPF most HESS, is also plotted in Fig. 1. Its model pa-
rameters together with its NMP and NS properties are given
in the Supplemental Material, respectively, in Tables II and
III. In the Supplemental material, we also present a few se-
lected models for NSs with maximum mass 2.2, 2.4, 2.6, and
2.75 M� (the extreme one), namely BMPF220, BMPF240,
BMPF260, and BMPF275, respectively.

In Fig. 7, we plot the 90% CI region of the conditional prob-
abilities P (R|M) (left) and P (⇤|M) (right) for the three sets.
The gray zones in the left panel indicate the 90% (solid) and
50% (dashed) CI for the binary components of the GW170817
event [53]. The NICER x-ray data predictions for the pulsars
PSR J0030+0451 and PSR J0740 + 6620 are also included,
in particular, the 1� (68%) confidence zone of the 2-D poste-
rior distribution in mass-radii domain from millisecond pulsar
PSR J0030+0451 (cyan and yellow) [46, 47] as well as PSR
J0740 + 6620 (violet) [46, 47]. The horizontal (radius) and
vertical (mass) error bars reflect the 1� credible interval de-
rived for the same NICER data’s 1-D marginalized posterior
distribution. Finally, the blue bars depict the radius of PSR
J0740+6620 at 2.08M� (left panel) and its tidal deformabil-
ity at 1.36 M� (right panel) [54]. As already indicated by
the full posteriors, masses above 2.3 M� are only obtained
within set 1 and set 2. Sets 1 and 2 predict ⇠ 0.5 km smaller
radii, as we can also confirm from Table III. Only set 3 pre-
dicts radii above 13 km at a 90%CI. Notice that according to

FIG. 6. NS mass-radius domains (full posterior) produced in the fol-
lowing three scenarios: set 1 with ⇠ 2 [0, 0.004] (black dot), set 2
with ⇠ 2 [0.004, 0.015] (salmon), and set 3 with ⇠ 2 [0.015, 0.04]
(green). The gray lines depict the constraints from the binary com-
ponents of GW170817, along with their 90% and 50% credible in-
tervals (CI). The 1� (68%) CI for the 2D posterior distribution in the
mass-radii domain for millisecond pulsar PSR J0030 + 0451 (cyan
and yellow) [46, 47] as well as PSR J0740 + 6620 (violet) [48, 49]
from the NICER x-ray data are also shown. Additionally, we show
the constraint obtained from HESS J1731-347 for 68.3% (95.4%)
CIs in dashed dark red (solid dark red) [50]. MR curves from a few
well-known RMF models are also plotted (see text for details). Also,
shown is BMPF most HESS, the EoS from our complete set that best
describes HESS J1731-347.

sets 1 and 2 the low mass object associated with the gravita-
tional waves GW190814 predicted to have a mass in the range
2.5-2.67 M� [58] could be a neutron star. The detection of
masses above 2.3M� puts strong constraints on ⇠. Concern-
ing the tidal deformability (right panel), set 1 and 2 predic-
tion for ⇤1.36, corresponding to the q = 1 mass ratio of the
GW170817 detection, lies well inside observations, while for
set 3 some models lie outside this range.

In order to better understand how the three sets compare
regarding the tidal deformability, we plot in Fig. 8 the ef-
fective tidal deformability ⇤̃ probability distribution calcu-
lated for the three sets for the chirp mass associated with the
GW170817, Mchirp = 1.186M�. For each and every mass-
radius curve, and fixing the chirp mass at 1.186M�, we select
all possible combinations of the mass m1 and m2 and calcu-
late the combined tidal deformability. For each EOS we have
44 combinations of m1 and m2. None of the distributions
goes below 300, consistent with the findings of several studies
that show that electromagnetic counterparts of GW170817,
the gamma-ray burst GRB170817A [59], and the electromag-
netic transient AT2017gfo [60] set a lower limit on the ⇤̃
of the order of 210 [61], 300 [62], 279 [63], and 309 [64].
The median along with its 90% CI of the three distributions
corresponding to sets 1, 2, and 3 are, respectively, 471+163

�71 ,
516+166

�84 , and 626+154
�132. Set 3 has a quite symmetric and wide

distribution while the other two are narrower asymmetric dis-
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Fig. 7. Mass-radius relations for the polytropic-quark EOS with realis-
tic SLy4 crust. Selected M(R) relations correspond to a polytropic seg-
ment of � = 4.5, connected to the SLy4 crust at n0 = 0.21 fm�3 and to
a linear EOS of ↵ = 1 (Eq. (2)) at n1 = 0.335 fm�3. The curves dif-
fer by the density jump � = n2/n1, as indicated in the plot. Regions
destabilised by the phase transition are indicated by dotted segments.
The black line indicates the SLy4 EOS. The pale green and blue bands
correspond to the mass ranges estimated in the low-spin prior case of
GW170817 (Abbott et al. 2017).

on a relatively simple model of the EOS; adding more degrees
of freedom will only further complicate this picture.

Using the selected EOS from Fig. 2 as an example, we dis-
cuss the tidal deformability ⇤ for the strong-phase transition
EOS by applying a measurement of the chirp mass,

M = (M1M2)3/5

(M1 + M2)1/5 , (13)

and the component mass ranges from the one binary NS merger
observed so far in gravitational waves, the GW170817 event
(Abbott et al. 2017). We adopt the central value of the chirp
mass, M = 1.188 M�, and component masses in the low-spin
prior estimation case: M1 2 (1.36, 1.60), M2 2 (1.17, 1.36)
(Abbott et al. 2017). An improved analysis that gives consis-
tent results is described in Abbott et al. (2018, 2019), where
revised values for the low-spin prior of the chirp mass and com-
ponent masses are M = 1.186 M�, M1 2 (1.36, 1.60), and
M2 2 (1.16, 1.36). A recent correction of the misprint reveal that
⇤̃ . 900 (Table IV in Abbott et al. 2019), instead of ⇤̃ . 800
(Abbott et al. 2017). Nevertheless, due to the very small di↵er-
ences between initial and re-evaluated estimations of the men-
tioned values, and the fact that their estimation errors overlap (in
the case of tidal deformability values, errors of the estimations
are considerable and depend on the waveform model, e.g. for the
symmetric TaylorF2 waveform model ⇤̃ = 340+580

�240 and for HPD
PhenomDNRT ⇤̃ = 300+430

�230, according to Abbott et al. 2019),
we decided to use the results from the detection paper.

To visualise the influence of a phase transition softening on
⇤, we manufacture a selection of the EOS that di↵er in the size
of the density jump � = n2/n1, and otherwise share their param-
eters (M(R) diagrams shown in Fig. 7). The phase transition
from the polytropic segment of � = 4.5 to the linear EOS of
↵ = 1 occurs at n1 = 0.335 fm�3 (crust-core transition from the
SLy4 EOS to a polytropic segment occurs at n0 = 0.21 fm�3).
The parameters are selected such that the onset of the softening

Fig. 8. ⇤2(⇤1) (left panel) and M(⇤) (right panel) relations for the
M(R) sequences from Fig. 7. The values of the ⇤ parameter are based
on the measurements of the chirp mass and the low-spin prior esti-
mates of the component masses in the binary NS merger GW170817
(Abbott et al. 2017). Shaded areas in the left panel denote the estimated
50% and 90% confidence regions corresponding to the measurement
(Abbott et al. 2017).

occurs within the range of masses estimated for the GW170817
event (Abbott et al. 2017).

In Fig. 8 we plot the ⇤1 � ⇤2 relations for the component
masses of the GW170817 event by assuming the estimated cen-
tral value of the chirp mass, M = 1.188 M�. Depending on
the strength of the phase transition (measured by the size of
the density jump �), the ⇤1 � ⇤2 relation may exhibit a non-
monotonic behaviour, as shown in the left panel of Fig. 8 for
the blue curve. This feature is a direct consequence of a non-
monotonic behaviour of the gravitational mass M as a function
of the tidal deformability ⇤ (right panel of Fig. 8), which is con-
nected to the instability caused by a su�ciently strong phase
transition. Detecting this feature in the incoming observations
of NS mergers will clearly signal a dense-matter softening in the
range of central parameters corresponding to NS merger compo-
nent masses.

Additionally, we produced a set of four strong phase-
transition M(R) curves, displayed in Fig. 9: their common
parameters are � = 4.5, n1 = 0.335 fm�3, � = 1.7, ↵ = 1.
The EOS di↵er only in the values of the SLy4-polytrope density
matching point, n0 = 0.16, 0.185, 0.21, 0.235 fm�3, respec-
tively. These n0 values were selected so that the phase transi-
tion mass Mph is placed below, above, or within the ranges of
the component masses for the low-spin prior estimation of the
GW170817 event (Abbott et al. 2017). The ⇤1�⇤2 relations are
displayed in Fig. 10. Specifically, the green and blue curves are
mirror rotated versions of themselves, reflecting the fact that the
phase transition occurs in the range of M1 or M2, respectively.

When both configurations (twin case) are present in the rel-
evant range of masses (e.g. blue and green curves in Fig. 9 and
in the right panel of Fig. 10), the twin branch gives more com-
pact M(R) configurations in comparison to those on the poly-
tropic branch, their ⇤ values are in general smaller, and thus
preferable from the point of view of the GW170817 obser-
vations (Abbott et al. 2017). Likewise, larger radii before the
phase transition onset (e.g. red curve in Fig. 9) are generally
less favoured by the observation of GW170817. This may put
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Paschalidis et al. (2018) and Raithel et al. (2018). We also aim
to constrain how the part of the EOS before the phase transition
influences the parameters of the EOS after the phase transition. In
other words, we aim to put constraints on the observable parame-
ters of the NS (such as the radius that is potentially a measurable
parameter) for the masses below that at which the phase transition
occurs, and investigate how the shape of the M(R) is related to
the properties of the twin branch.

The article is composed as follows. In Sect. 2 we describe the
parametric EOS and the methods of obtaining the solutions of
the hydrostatic equilibrium equations for the NSs. In Sect. 3 we
present the properties of NS sequences compatible with existing
observational constraints, such as the Mmax requirement and the
tidal constraints of GW170817. Section 4 contains discussion
and summary.

2. Equations of state and methods

In order to survey the space of solutions corresponding to M(R)
sequences with high-density phase transitions, we employ a con-
servative approach and use the following simplified, parametric
EOS. We assume the knowledge of the low-density part of the
EOS and adopt the SLy4 EOS description of Haensel & Pichon
(1994) and Douchin & Haensel (2001) up to a baryon density
n0, comparable to and typically larger than the nuclear saturation
density (ns ⌘ 0.16 fm�3). At n0 a relativistic polytrope (Tooper
1965) replaces the tabulated SLy4 EOS. The definition of the
pressure P and the energy-density ⇢c2 are standard,

P = n�, ⇢c2 =
P
� � 1

+ nmbc2, (1)

where  is the pressure coe�cient, � is the index of the polytrope,
and mb is the mass of the baryon in this phase. The index � is a
parameter of choice; consequently, by demanding the chemical
and mechanical equilibrium at n0,  and mb are fixed. The poly-
trope ends at a density n1 > n0, and is connected to a simple
bag EOS (Chodos et al. 1974; Farhi & Ja↵e 1984), characteris-
ing the quark matter. We use a linear pressure-density relation of
Zdunik (2000),

P(⇢) = ↵(⇢ � ⇢⇤)c2, n(P) = n⇤
 
1 +
↵ + 1
↵

P
⇢⇤c2

!1/(↵+1)

, (2)

with ↵ denoting square of the speed of sound in a quark mat-
ter, and ⇢⇤ and n⇤ the energy density and baryon density of this
matter at zero pressure, respectively. We assume that at the poly-
trope/bag boundary matter is softened by the first-order phase
transition defined by a density jump � = n2/n1. Maxwell con-
struction at this point results in a corresponding mass-energy
density jump ⇢2/⇢1 = � + (� � 1)P1/⇢1c2. The values of n2, ⇢2
determined by the definition of the transition point (n1, ⇢1, P1),
together with a given � yield, from Eq. (2), the values of ⇢⇤ =
⇢2 � P1/↵c2 and n⇤. The schematic pressure–density relation for
such an EOS is presented in the left panel of Fig. 1. The initial
parameter ranges are shown in Table 1.

Given the EOS, we solve the equations of hydrostatic equi-
librium for a spherically symmetric distribution of mass (Tolman
1939; Oppenheimer & Volko↵ 1939),

dP(r)
dr
= �G

r2

 
⇢(r) +

P(r)
c2

!  
M(r) +

4⇡r3P(r)
c2

!

⇥
 
1 � 2GM(r)

c2r

!�1

, (3)

Fig. 1. Left panel: schematic EOS with a density jump phase transition
on the pressure P–baryon density nb plane. Right panel: gravitational
mass M–radius R sequence of solutions in the case of a strong (desta-
bilising) phase transition. We show the characteristic masses in this sit-
uation: the mass at the phase transition density Mph, the maximum mass
Mmax, and the minimum mass Mmin at the end of the instability (decreas-
ing part of M(R) between Mmin and Mph indicated with a dotted line).
Stable configurations between the Mmax and Mmin are sometimes called
the twin branch.

Table 1. Ranges of the poly-quark EOS parameters used in the study.

n0 (fm�3) � n1 (fm�3) � ↵

min 0.03 2.25 0.12 1.3 0.2
max 0.30 5.50 0.65 2.2 1.0

Notes. n0 is the baryon density at which the realistic SLy4 ends and a
relativistic polytrope (Eq. (1)) with index � is attached. The polytrope
runs until n1, at which a density jump � = n2/n1 is introduced (see
Fig. 1). The linear approximation to the quark EOS (Eq. (2)) charac-
terised by the ↵ parameter begins at n2 = �n1.

supplied with the equation for one of the metric functions,

d⌫(r)
dr
= �

 
2

P(r) + ⇢(r)c2

!
dP(r)

dr
, (4)

for a spherically symmetric metric of the form

ds2 = e⌫(r)c2dt2 � dr2

1 � 2GM(r)/rc2 � r2(d✓2 + sin2 ✓d�2), (5)

and the equation for the total gravitational mass inside the radius
r:

dM(r)
dr

= 4⇡⇢(r)r2. (6)

We solve an additional equation for the tidal deformability of the
star, defined as

�td =
2
3

R5k2. (7)

It represents the reaction of the star on the external tidal field
(such as that in a tight binary system; e.g. Abbott et al. 2017).
Influence of the tidal field is obtained in the lowest order approx-
imation, by calculating the second (quadrupole) tidal Love num-
ber k2 (Love 1911)

k2 =
8
5

x5(1 � 2x)2�2 � y + 2x(y � 1)
�⇣

2x
�
6 � 3y + 3x(5y � 8)

�

+ 4x3
⇣
13 � 11y + x(3y � 2) + 2x2(1 + y)

⌘

+3(1 � 2x)2�2 � y + 2x(y � 1)
�

ln(1 � 2x)
⌘�1
, (8)
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Fig. 7. Mass-radius relations for the polytropic-quark EOS with realis-
tic SLy4 crust. Selected M(R) relations correspond to a polytropic seg-
ment of � = 4.5, connected to the SLy4 crust at n0 = 0.21 fm�3 and to
a linear EOS of ↵ = 1 (Eq. (2)) at n1 = 0.335 fm�3. The curves dif-
fer by the density jump � = n2/n1, as indicated in the plot. Regions
destabilised by the phase transition are indicated by dotted segments.
The black line indicates the SLy4 EOS. The pale green and blue bands
correspond to the mass ranges estimated in the low-spin prior case of
GW170817 (Abbott et al. 2017).

on a relatively simple model of the EOS; adding more degrees
of freedom will only further complicate this picture.

Using the selected EOS from Fig. 2 as an example, we dis-
cuss the tidal deformability ⇤ for the strong-phase transition
EOS by applying a measurement of the chirp mass,

M = (M1M2)3/5

(M1 + M2)1/5 , (13)

and the component mass ranges from the one binary NS merger
observed so far in gravitational waves, the GW170817 event
(Abbott et al. 2017). We adopt the central value of the chirp
mass, M = 1.188 M�, and component masses in the low-spin
prior estimation case: M1 2 (1.36, 1.60), M2 2 (1.17, 1.36)
(Abbott et al. 2017). An improved analysis that gives consis-
tent results is described in Abbott et al. (2018, 2019), where
revised values for the low-spin prior of the chirp mass and com-
ponent masses are M = 1.186 M�, M1 2 (1.36, 1.60), and
M2 2 (1.16, 1.36). A recent correction of the misprint reveal that
⇤̃ . 900 (Table IV in Abbott et al. 2019), instead of ⇤̃ . 800
(Abbott et al. 2017). Nevertheless, due to the very small di↵er-
ences between initial and re-evaluated estimations of the men-
tioned values, and the fact that their estimation errors overlap (in
the case of tidal deformability values, errors of the estimations
are considerable and depend on the waveform model, e.g. for the
symmetric TaylorF2 waveform model ⇤̃ = 340+580

�240 and for HPD
PhenomDNRT ⇤̃ = 300+430

�230, according to Abbott et al. 2019),
we decided to use the results from the detection paper.

To visualise the influence of a phase transition softening on
⇤, we manufacture a selection of the EOS that di↵er in the size
of the density jump � = n2/n1, and otherwise share their param-
eters (M(R) diagrams shown in Fig. 7). The phase transition
from the polytropic segment of � = 4.5 to the linear EOS of
↵ = 1 occurs at n1 = 0.335 fm�3 (crust-core transition from the
SLy4 EOS to a polytropic segment occurs at n0 = 0.21 fm�3).
The parameters are selected such that the onset of the softening

Fig. 8. ⇤2(⇤1) (left panel) and M(⇤) (right panel) relations for the
M(R) sequences from Fig. 7. The values of the ⇤ parameter are based
on the measurements of the chirp mass and the low-spin prior esti-
mates of the component masses in the binary NS merger GW170817
(Abbott et al. 2017). Shaded areas in the left panel denote the estimated
50% and 90% confidence regions corresponding to the measurement
(Abbott et al. 2017).

occurs within the range of masses estimated for the GW170817
event (Abbott et al. 2017).

In Fig. 8 we plot the ⇤1 � ⇤2 relations for the component
masses of the GW170817 event by assuming the estimated cen-
tral value of the chirp mass, M = 1.188 M�. Depending on
the strength of the phase transition (measured by the size of
the density jump �), the ⇤1 � ⇤2 relation may exhibit a non-
monotonic behaviour, as shown in the left panel of Fig. 8 for
the blue curve. This feature is a direct consequence of a non-
monotonic behaviour of the gravitational mass M as a function
of the tidal deformability ⇤ (right panel of Fig. 8), which is con-
nected to the instability caused by a su�ciently strong phase
transition. Detecting this feature in the incoming observations
of NS mergers will clearly signal a dense-matter softening in the
range of central parameters corresponding to NS merger compo-
nent masses.

Additionally, we produced a set of four strong phase-
transition M(R) curves, displayed in Fig. 9: their common
parameters are � = 4.5, n1 = 0.335 fm�3, � = 1.7, ↵ = 1.
The EOS di↵er only in the values of the SLy4-polytrope density
matching point, n0 = 0.16, 0.185, 0.21, 0.235 fm�3, respec-
tively. These n0 values were selected so that the phase transi-
tion mass Mph is placed below, above, or within the ranges of
the component masses for the low-spin prior estimation of the
GW170817 event (Abbott et al. 2017). The ⇤1�⇤2 relations are
displayed in Fig. 10. Specifically, the green and blue curves are
mirror rotated versions of themselves, reflecting the fact that the
phase transition occurs in the range of M1 or M2, respectively.

When both configurations (twin case) are present in the rel-
evant range of masses (e.g. blue and green curves in Fig. 9 and
in the right panel of Fig. 10), the twin branch gives more com-
pact M(R) configurations in comparison to those on the poly-
tropic branch, their ⇤ values are in general smaller, and thus
preferable from the point of view of the GW170817 obser-
vations (Abbott et al. 2017). Likewise, larger radii before the
phase transition onset (e.g. red curve in Fig. 9) are generally
less favoured by the observation of GW170817. This may put
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J. L. Zdunik and P. Haensel: 2 M! pulsar and strange cores

Fig. 9. Same notations as in Fig. 8, but for BM165 EOS of nucleon and
baryon matter (Bednarek et al. 2012). Analytical EOS of quark matter
and EOS.Q(CFL) with ρ2 = 2.5ρ0, aCFL = 0.5, λCFL = 1.2. (This figure
is available in color in the electronic form.)

density at which the first-order phase transition to quark phase
occurs should be similar to the threshold density for hyperons,
∼2ρ0−3ρ0. Second, the relative density jump at the baryon-quark
matter phase transition should be below 30%. Third, the quark
matter should be sufficiently stiff, which can be expressed as a
condition on the sound speed in quark plasma.

The measured 2.0 M! is a lower bound to a true Mmax =

M(true)
max . The upper bound, resulting in the condition of the speed

of sound less than c combined with our confidence in the theo-
retical nucleon EOS for ρ < 2ρ0, is 3.0 M! (see, e.g., Haensel
et al. 2007, and references therein). M(true)

max lies therefore between
2 M! and 3 M!. Obviously, NS masses higher than 2.0 M! have
to be contemplated. The question is, how much higher? The
mass of a “black widow” pulsar could be as high as 2.4 M!, but
the present uncertainty is too large for this number to be used as
an observational constraint (see, e.g., Lattimer 2011).

To discuss the possibility that masses significantly larger
than 2.0 M! could be reached, we plotted in Fig. 10 the bounding
lines for M(obs)

max = 2.2 M! and M(obs)
max = 2.4 M!. As we see in

Fig. 10, to fulfill condition M(obs)
max = 2.4 M!, we have to assume

very stiff quark matter, quite close to the causality limit a = 1.
The situation becomes even more difficult if we require a

strict stability of quark cores. As a result of the high stiffness of
quark matter that is necessary for M(obs)

max > 2 M! (and a fortiori
for higher lower bounds M(obs)

max ), the quark phase turns out to
be unstable, beyond some pressure, with respect to hadroniza-
tion. Assuming complete thermodynamic equilibrium, we de-
rived very similar Mmax for stars with hyperon and quark cores.
Consequently, the transition to quark matter could not yield
Mmax > 2 M! if NS with hyperonic cores had M(B)

max (signif-
icantly) below 2 M!. This is true also for M(obs)

max > 2 M!.
Therefore, provided our picture of dense matter is valid, we find
that a strong hyperon repulsion at high density is mandatory in
general.

The high-density thermodynamic instability of the quark
phase and its consequences for Mmax should be taken with a
grain of salt. Our models of dense baryonic matter assume point

Fig. 10. Constraints in the a − λ plane resulting from three different
values of maximum measured mass M(obs)

max = 2.0 M!, 2.2 M!, 2.4 M!.
We assume a BM165 EOS of baryon matter and a quark core starting
at P1 = 47 MeV fm−3. Each line is an upper boundary of the region of
(aCFL , λCFL ) consistent with Mmax > M(obs)

max . Solid lines are obtained for
quark cores composed of a 2SC layer (P1 < P < P2) and a CFL core
starting at P2 = 69 MeV fm−3. These lines are labeled by the density
jump at the B-2SC interface λ2SC = 1.05, 1.15. We used a2SC = 0.3
(Agrawal 2010). The dashed lines are obtained for purely CFL cores
(no 2SC layer). (This figure is available in color in the electronic form.)

particles. This assumption may be expected to break down at
ρ ∼ 5 ÷ 8ρ0. Therefore, the “reconfinement” of the quark
phase is, in our opinion, likely to indicate the inadequacy of
point-particle baryonic phase models (see also Łastowiecki et al.
2012). A similar “reconfinement” was encountered in the nu-
merical modeling of the phase diagram of hot and dense hadron
gas specific to relativistic heavy-ion collisions (see Satarov et al.
2009). A proposed solution consisted in introducing the finite-
size corrections for hadrons within the excluded volume approx-
imation in the confined (hadronic) phase (Satarov et al. 2009).
We will use this approximation to re-calculate EOS.B in our
forthcoming paper on strange cores in massive NS.

There is another weak point in the commonly used mod-
els of quark cores in NS, characteristic also of the present pa-
per: this is a two-phase approach, with each phase, baryon and
quark, treated using basically different descriptions. In principle,
both phases and the transition between them should have been
treated using a unified approach based on the QCD, so that that
the influence of the dense medium on the baryon structure and
baryon interactions are taken into account in a consistent way.
This approach is beyond the reach of the present-day theory of
dense matter. However, a phenomenological modeling of baryon
structure in dense matter is possible, e.g., within a quark-meson
coupling model (for references, see Whittenbury et al. 2012).
A more complete description of neutron-star quark cores, going
beyond the two-phase approximation, can hopefully be achieved
in the future.

In this paper we were considering non-rotating config-
urations. Pulsar PSR J1614-2230 rotates with a frequency
f = 1/P = 317 Hz and the effect for maximum mass is on the
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Fig. 9. Same notations as in Fig. 8, but for BM165 EOS of nucleon and
baryon matter (Bednarek et al. 2012). Analytical EOS of quark matter
and EOS.Q(CFL) with ρ2 = 2.5ρ0, aCFL = 0.5, λCFL = 1.2. (This figure
is available in color in the electronic form.)

density at which the first-order phase transition to quark phase
occurs should be similar to the threshold density for hyperons,
∼2ρ0−3ρ0. Second, the relative density jump at the baryon-quark
matter phase transition should be below 30%. Third, the quark
matter should be sufficiently stiff, which can be expressed as a
condition on the sound speed in quark plasma.

The measured 2.0 M! is a lower bound to a true Mmax =

M(true)
max . The upper bound, resulting in the condition of the speed

of sound less than c combined with our confidence in the theo-
retical nucleon EOS for ρ < 2ρ0, is 3.0 M! (see, e.g., Haensel
et al. 2007, and references therein). M(true)

max lies therefore between
2 M! and 3 M!. Obviously, NS masses higher than 2.0 M! have
to be contemplated. The question is, how much higher? The
mass of a “black widow” pulsar could be as high as 2.4 M!, but
the present uncertainty is too large for this number to be used as
an observational constraint (see, e.g., Lattimer 2011).

To discuss the possibility that masses significantly larger
than 2.0 M! could be reached, we plotted in Fig. 10 the bounding
lines for M(obs)

max = 2.2 M! and M(obs)
max = 2.4 M!. As we see in

Fig. 10, to fulfill condition M(obs)
max = 2.4 M!, we have to assume

very stiff quark matter, quite close to the causality limit a = 1.
The situation becomes even more difficult if we require a

strict stability of quark cores. As a result of the high stiffness of
quark matter that is necessary for M(obs)

max > 2 M! (and a fortiori
for higher lower bounds M(obs)

max ), the quark phase turns out to
be unstable, beyond some pressure, with respect to hadroniza-
tion. Assuming complete thermodynamic equilibrium, we de-
rived very similar Mmax for stars with hyperon and quark cores.
Consequently, the transition to quark matter could not yield
Mmax > 2 M! if NS with hyperonic cores had M(B)

max (signif-
icantly) below 2 M!. This is true also for M(obs)

max > 2 M!.
Therefore, provided our picture of dense matter is valid, we find
that a strong hyperon repulsion at high density is mandatory in
general.

The high-density thermodynamic instability of the quark
phase and its consequences for Mmax should be taken with a
grain of salt. Our models of dense baryonic matter assume point

Fig. 10. Constraints in the a − λ plane resulting from three different
values of maximum measured mass M(obs)

max = 2.0 M!, 2.2 M!, 2.4 M!.
We assume a BM165 EOS of baryon matter and a quark core starting
at P1 = 47 MeV fm−3. Each line is an upper boundary of the region of
(aCFL , λCFL ) consistent with Mmax > M(obs)

max . Solid lines are obtained for
quark cores composed of a 2SC layer (P1 < P < P2) and a CFL core
starting at P2 = 69 MeV fm−3. These lines are labeled by the density
jump at the B-2SC interface λ2SC = 1.05, 1.15. We used a2SC = 0.3
(Agrawal 2010). The dashed lines are obtained for purely CFL cores
(no 2SC layer). (This figure is available in color in the electronic form.)

particles. This assumption may be expected to break down at
ρ ∼ 5 ÷ 8ρ0. Therefore, the “reconfinement” of the quark
phase is, in our opinion, likely to indicate the inadequacy of
point-particle baryonic phase models (see also Łastowiecki et al.
2012). A similar “reconfinement” was encountered in the nu-
merical modeling of the phase diagram of hot and dense hadron
gas specific to relativistic heavy-ion collisions (see Satarov et al.
2009). A proposed solution consisted in introducing the finite-
size corrections for hadrons within the excluded volume approx-
imation in the confined (hadronic) phase (Satarov et al. 2009).
We will use this approximation to re-calculate EOS.B in our
forthcoming paper on strange cores in massive NS.

There is another weak point in the commonly used mod-
els of quark cores in NS, characteristic also of the present pa-
per: this is a two-phase approach, with each phase, baryon and
quark, treated using basically different descriptions. In principle,
both phases and the transition between them should have been
treated using a unified approach based on the QCD, so that that
the influence of the dense medium on the baryon structure and
baryon interactions are taken into account in a consistent way.
This approach is beyond the reach of the present-day theory of
dense matter. However, a phenomenological modeling of baryon
structure in dense matter is possible, e.g., within a quark-meson
coupling model (for references, see Whittenbury et al. 2012).
A more complete description of neutron-star quark cores, going
beyond the two-phase approximation, can hopefully be achieved
in the future.

In this paper we were considering non-rotating config-
urations. Pulsar PSR J1614-2230 rotates with a frequency
f = 1/P = 317 Hz and the effect for maximum mass is on the
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astrophysical observations and obey the same physical constraints, such as mechanical stability and causality.
Among them, some have nontrivial structures in the sound speed whereas others do not. We conclude that
astrophysical information to date do not require the existence of a phase transition to quark matter in the density
range explored in the core of neutron stars.
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I. INTRODUCTION

Recent multimessenger observations of neutron stars
(NSs), i.e., radio [1–4], x-ray [5–8], gravitational-wave (GW)
observations [9,10], and their electromagnetic counterparts
[11,12], have provided valuable new insights into the equa-
tion of state (EoS) of dense matter [7,13–20]. Nevertheless,
the composition of matter at several times nuclear saturation
density (nsat ≈ 0.16 fm−3) remains largely unknown [21] but
might be elucidated by future multimessenger data.

Although NS matter at densities n ≈ nsat is composed pri-
marily of nucleons, a change in the degrees of freedom to
exotic forms of matter, such as quark matter, might occur at
larger densities inside NSs [22–24]. Such a change is expected
to likely manifest itself in terms of nontrivial structures in
the sound-speed profile [25,26]. For example, an abrupt first-
order phase transition (FOPT) creates a discontinuous drop in
the sound speed as a function of density [27,28]. Alternatively,
a softening of the EoS indicated by the sound speed approach-
ing the conformal limit, cs → 1/

√
3 might be indicative of

the onset of weakly coupled quark matter [29,30]. In stark
contrast to such softening phase transitions, a transition to
quarkyonic matter could stiffen the EoS, leading to a sharp
peak in the sound speed profile [31–37].

Recently, studies investigated nontrivial structures in the
EoS above saturation density, such as bumps in the sound
speed [25,26] or a kink in the EoS [38]. The authors of
Ref. [38], using a general extension scheme in the speed of
sound along with several theoretical and experimental con-
straints, claimed to have found evidence for a phase transition
to quark matter in the heaviest NSs due to the presence of a
kink in the envelope of all EoS models. On the other hand, the

*rsomasun@syr.edu

authors of Ref. [25] explicitly considered nontrivial structures
in the speed of sound, such as kinks, dips, and peaks. This
allowed the authors to construct NSs, the masses of which are
consistent even with the mass of the secondary component of
GW190814 [39]. They concluded that such nontrivial struc-
tures are likely present at densities probed in very massive
NSs (≈2.5M%). Note, however, that the secondary component
in GW190814 was likely not a neutron star [40,41].

Here, we reinvestigate if nontrivial structures in the speed
of sound can be inferred from present astrophysical data. For
concreteness, we define a nontrivial structure to be either a
nonmonotonous dependence of the sound speed on the en-
ergy density or a tendency of the sound speed towards the
conformal limit 1/

√
3 in maximally massive stars. We use a

systematic approach to model the EoS in the speed of sound
vs density plane, employing a piecewise linear model for the
speed of sound which is a modified version of the scheme of
Ref. [42] and similar to Ref. [38] but with a larger number
of model parameters, see Sec. II for details. We then group
different EoS realizations according to the slope in the speed
of sound, the appearance of nontrivial structures, or explicit
FOPT, and analyze the effect of astrophysical NS observations
in Sec. III. We compare our results with those presented in the
literature and comment on the evidence for phase transitions
linked to astrophysical data. Our conclusions are given in
Sec. IV.

II. EQUATION OF STATE MODEL

At low densities, up to nuclear saturation density nsat, we
fix our EoS to be given by the SLy4 energy-density functional
[43], a phenomenological force that is well calibrated to nu-
clear matter as well as finite nuclei properties, and commonly
used in astrophysical applications. Beyond nsat, for each EoS
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FIG. 2. Mass-radius curves for all EoSs that we employ in our paper (gray). The samples are divided into three panels corresponding to
three EoS groups (see the text). Note that for each group only 1000 random samples out of the total 10 000 EoSs are shown. We also show the
observational constraints enforced in this paper. EoSs that pass all observational constraints at the 90% confidence level are shown in green.
See the text for more details.

(2) the LIGO gravitational-wave observation GW170817
[9,44],

(3) and upper and lower limits on the maximum NS mass
MTOV.

For the NICER observation of J0740 + 6620, we have
averaged over the analyses of Refs. [7,8] and use the contours
representing the 90% confidence level (CL). For the pulsar
J0030 + 0451, we use the analysis of Ref. [5] only. We do not
average over the results of Refs. [5,6] since the two analyses
are quite similar. Then, an EoS is accepted if it passes through
the contours, and it is rejected otherwise.

For GW170817, we have transformed the inferred result
for the tidal deformability, !̃ = 222+420

−138 at 90% CL [44], into
a single constraint on the radius for the mass m = 1.38 M".
We have calculated an upper bound on the radius at that mass
by running over all our EoSs compatible with GW170817 and
by fixing the mass ratio q = m1/m2 = 1. This upper bound on
the radius at 1.38 M" is 12.9 km, and it is indicated by a blue
dot in the figure.

Finally, for MTOV we impose the constraint 2 M" <
MTOV < 2.6 M". The lower bound of 2 M" is chosen to ac-
count for heavy pulsar radio observations [1–4]. The upper
bound of 2.6 M" is consistent with the mass of the secondary
object in the GW190814 event, which is likely a black hole
[39,41].

We note that all observations are implemented by hard cuts
at the 90% CL, including the NICER results. This approach
is sufficient as we search for general trends of the speed of
sound. However, detailed inferences of the EoS should use
full posteriors for all astrophysical data. The EoSs that satisfy
all constraints at the 90% CL are shown in green in Fig. 2.

We note that additional NS radii have been inferred
from x-ray observations [45]. These include measurements
of quiescent low-mass x-ray binaries [46] and NSs which
exhibit photospheric radius expansion x-ray bursts [47], see
Refs. [48,49] for reviews. However, these measurements
contain sizable systematic uncertainties which prohibit a
meaningful inclusion of these data in our analysis. We, there-
fore, restrict ourselves only to the previously mentioned data.

III. RESULTS

We present the results of our analysis based on 10 000 EoSs
per group, which are constrained by astrophysical data and
physical constraints of causality and mechanical stability. Our
present uncertainty on the density dependence of the EoS is
explored.

A. Discussion of the EoS

The envelopes containing all EoSs that survive astrophysi-
cal constraints are shown in Fig. 3. The filled contours enclose
EoSs on the stable NS branch for which the density is limited
by nTOV, the central density of the maximum-mass NS with
M = MTOV, whereas the dashed contours enclose the full EoS
up to the maximum density we considered (12nsat). So the

102 103 104

Energy density [MeV fm−3]

100

101

102

103

104

P
re

ss
ur

e
[M

eV
fm

−
3 ] pQCD

Annala et al.

εkink

No FOPT

FOPT-1

FOPT-2

FIG. 3. EoSs of this paper that satisfy observational constraints.
We show envelopes for EoSs without FOPT (red) and EoSs with
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urations, whereas the solid lines show the EoSs extended beyond the
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results of Ref. [38], and the gray contour represents the perturbative
QCD constraint.
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FIG. 1. Schematic of the employed EoS model showing two EoSs per group. Different colors indicate the EoS group, and solid and dashed
lines indicate the two EoSs in each group. Dotted lines depict the EoS beyond the central density in the maximum-mass configuration, i.e., the
unstable NS branch.

we create a nonuniform grid in density between nsat and 12nsat

by randomizing an initial uniform grid with a spacing of
nsat: at each grid point, a density shift drawn from a uniform
distribution between −0.4nsat and 0.4nsat is added and defines
the set {ni}i=1,11. We then sample random values for c2

s (ni )
between 0 and c2 with c being the speed of light (we set
c = 1 in the following). Finally, we connect all points c2

s,i(ni )
using linear segments. The left panel in Fig. 1 illustrates our
construction with a few examples.

We then sort the resulting EoSs into three groups ac-
cording to the maximal slope in the speed of sound c′

max =
max{|dc2

s /dn|}. Defining the slope at nsat to be c′
sat =

dc2
s /dn(nsat ) = 0.55 fm3,

(1) group 1 contains EoSs whose maximal slope is less
than three times the slope at nsat, c′

max ! 3c′
sat,

(2) group 2 contains all EoSs with 3c′
sat < c′

max ! 6c′
sat,

(3) and group 3 contains all EoSs with 6c′
sat < c′

max !
9c′

sat.

These groups are, thus, mutually exclusive. The upper limit
in the maximal speed of sound for group 3 allows us to
disregard EoSs for which the sound speed strongly oscillates
with density, a case which is not observed in any EoS models
besides those which incorporate a FOPT. We explicitly con-
struct FOPTs later in the paper and analyze their impact on
our results. Note that c2

s is piecewise linear in density, see
the left panel in Fig. 1, which implies that c′ is piecewise
constant. However, our approach still allows for sufficient
model freedom as we use 11 segments, and the maximum
c′ over all segments is used to partition the EoSs. We have
generated 10 000 EoSs in each group, and a sample of two
EoSs per group is shown in Fig. 1 to provide a schematic of
our EoS model.

It is interesting to analyze the properties of the few example
EoSs shown in Fig. 1. Group 3 (back lines) collects some
of the stiffest EoSs, allowing for large slopes of the sound
speed, and, therefore, a fast increase in pressure. However,
one of the EoSs (dashed black line) undergoes a softening at
2nsat just before stiffening again at larger densities. This low-
density softening is particularly visible in the middle panel
which shows the pressure as a function of the energy density.
Finally, the last panel shows the corresponding mass-radius

relations where this particular EoS predicts the smallest radii
for canonical mass NSs. It, however, predicts larger radii for
a 2 M# NS as compared to the examples from other groups.
This is a consequence of the stiffening of the EoSs at densities
larger than about 3nsat. Note that the other EoS from group 3
predicts the largest radii for all masses due to the absence of
such low-density softening. Hence, the differentiation of the
EoS in groups according to the slope of the speed of sound
cannot directly be mapped to NS radii, which is also obvious
from the intersection of EoS belonging to different groups in
the mass-radius plane. Instead, this differentiation is nontrivial
because all NS structure properties are integrated quantities.

In addition, the two EoSs of group 3 exhibit a pronounced
peak in the sound speed, centered around ≈4nsat. Investigat-
ing such nontrivial structures are the main goal of this paper.
The EoSs in groups 1 and 2, on the other hand, have a more
continuous behavior with less drastic bumps and kinks. Note,
that individual EoS in each group can exhibit both trivial
and nontrivial behavior. Therefore, in the following, we will
average over EoSs in each group to assess their behavior.

The density-dependent sound speed can be used to obtain
the EoS. This is performed by inverting the expression c2

s =
d p/dε = (n dµ)/(µ dn) to obtain the chemical potential µ,
pressure p, and energy density ε in the interval ni ! n ! ni+1,

ln

(
µ(n)

µi

)
=

∫ n

ni

c2
s (n′)

n′ dn′, (1)

p(n) = p(ni ) +
∫ n

ni

c2
s (n′)µ(n′)dn′, (2)

ε(n) = ε(ni ) +
∫ n

ni

µ(n′)dn′. (3)

Finally, we solve the Tolman–Oppenheimer–Volkoff (TOV)
equations for each EoS to determine NS radii (R) and dimen-
sionless tidal deformabilities (") as functions of masses (M),
see, for instance, Ref. [42] for more details.

In Fig. 2, we show the resulting mass-radius curves for all
three EoS groups together with the astrophysical observations
that we consider in this paper:

(1) The Neutron star Interior Composition Explorer
(NICER) observations of millisecond pulsars J0030 +
0451 [5,6] and J0740 + 6620 [7,8],
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lines indicate the two EoSs in each group. Dotted lines depict the EoS beyond the central density in the maximum-mass configuration, i.e., the
unstable NS branch.

we create a nonuniform grid in density between nsat and 12nsat

by randomizing an initial uniform grid with a spacing of
nsat: at each grid point, a density shift drawn from a uniform
distribution between −0.4nsat and 0.4nsat is added and defines
the set {ni}i=1,11. We then sample random values for c2

s (ni )
between 0 and c2 with c being the speed of light (we set
c = 1 in the following). Finally, we connect all points c2

s,i(ni )
using linear segments. The left panel in Fig. 1 illustrates our
construction with a few examples.

We then sort the resulting EoSs into three groups ac-
cording to the maximal slope in the speed of sound c′

max =
max{|dc2

s /dn|}. Defining the slope at nsat to be c′
sat =

dc2
s /dn(nsat ) = 0.55 fm3,

(1) group 1 contains EoSs whose maximal slope is less
than three times the slope at nsat, c′

max ! 3c′
sat,

(2) group 2 contains all EoSs with 3c′
sat < c′

max ! 6c′
sat,

(3) and group 3 contains all EoSs with 6c′
sat < c′

max !
9c′

sat.

These groups are, thus, mutually exclusive. The upper limit
in the maximal speed of sound for group 3 allows us to
disregard EoSs for which the sound speed strongly oscillates
with density, a case which is not observed in any EoS models
besides those which incorporate a FOPT. We explicitly con-
struct FOPTs later in the paper and analyze their impact on
our results. Note that c2

s is piecewise linear in density, see
the left panel in Fig. 1, which implies that c′ is piecewise
constant. However, our approach still allows for sufficient
model freedom as we use 11 segments, and the maximum
c′ over all segments is used to partition the EoSs. We have
generated 10 000 EoSs in each group, and a sample of two
EoSs per group is shown in Fig. 1 to provide a schematic of
our EoS model.

It is interesting to analyze the properties of the few example
EoSs shown in Fig. 1. Group 3 (back lines) collects some
of the stiffest EoSs, allowing for large slopes of the sound
speed, and, therefore, a fast increase in pressure. However,
one of the EoSs (dashed black line) undergoes a softening at
2nsat just before stiffening again at larger densities. This low-
density softening is particularly visible in the middle panel
which shows the pressure as a function of the energy density.
Finally, the last panel shows the corresponding mass-radius

relations where this particular EoS predicts the smallest radii
for canonical mass NSs. It, however, predicts larger radii for
a 2 M# NS as compared to the examples from other groups.
This is a consequence of the stiffening of the EoSs at densities
larger than about 3nsat. Note that the other EoS from group 3
predicts the largest radii for all masses due to the absence of
such low-density softening. Hence, the differentiation of the
EoS in groups according to the slope of the speed of sound
cannot directly be mapped to NS radii, which is also obvious
from the intersection of EoS belonging to different groups in
the mass-radius plane. Instead, this differentiation is nontrivial
because all NS structure properties are integrated quantities.

In addition, the two EoSs of group 3 exhibit a pronounced
peak in the sound speed, centered around ≈4nsat. Investigat-
ing such nontrivial structures are the main goal of this paper.
The EoSs in groups 1 and 2, on the other hand, have a more
continuous behavior with less drastic bumps and kinks. Note,
that individual EoS in each group can exhibit both trivial
and nontrivial behavior. Therefore, in the following, we will
average over EoSs in each group to assess their behavior.

The density-dependent sound speed can be used to obtain
the EoS. This is performed by inverting the expression c2

s =
d p/dε = (n dµ)/(µ dn) to obtain the chemical potential µ,
pressure p, and energy density ε in the interval ni ! n ! ni+1,

ln

(
µ(n)

µi

)
=

∫ n

ni

c2
s (n′)

n′ dn′, (1)

p(n) = p(ni ) +
∫ n

ni

c2
s (n′)µ(n′)dn′, (2)

ε(n) = ε(ni ) +
∫ n

ni

µ(n′)dn′. (3)

Finally, we solve the Tolman–Oppenheimer–Volkoff (TOV)
equations for each EoS to determine NS radii (R) and dimen-
sionless tidal deformabilities (") as functions of masses (M),
see, for instance, Ref. [42] for more details.

In Fig. 2, we show the resulting mass-radius curves for all
three EoS groups together with the astrophysical observations
that we consider in this paper:

(1) The Neutron star Interior Composition Explorer
(NICER) observations of millisecond pulsars J0030 +
0451 [5,6] and J0740 + 6620 [7,8],

025801-2



Maximum mass and maximum density
NS as a laboratory of high density matter

Figure 3. (Color online) Gravitational mass M vs. central baryon density nc for non-rotating NS
models based on the EOS.N (black lines - N family), EOS.NH (blue lines - H family), EOS.BQ (red lines
- Q family of hybrid stars). Solid lines: stable NS configurations. Dotted lines: configurations unstable
with respect to small radial perturbations. The sign ∗ on a line indicates that vs = c at the center of
this configuration. Configurations to the right of ∗ have vs > c cores, within which causality is violated.
Vertical lines crossing the M(nc) lines indicate configurations with nc/n0

= 2, 3, . . . .

are very strong. First, the density at which first-order phase transition to quark phase occurs
should be similar to the threshold density for hyperons, ∼ 2ρ0−3ρ0 . Second, the relative density
jump at the baryon-quark matter phase transition should be below 30%. Third, quark matter
should be sufficiently stiff, which can be expressed as a condition on the sound speed in quark
plasma, vs/c $ 0.8 − 0.9. Fourth, the pairing in the color-superconducting phase should be
strong (energy gap ∼ 50− 100 MeV), in order to make the Q-phase thermodynamically stable.
All in all, this means a ”fine tuning” of the quark-matter phase and of the B−→Q (1-st order)
phase transition.

7. Families of neutron stars
7.1. Two densities: nb and ρ
When investigating the EOS of NS matter, we have to consider two distinct densities, ρ = E/c2

and nb (Sect. 2). While ρ is the relevant quantity for the GTR calculations of the NS structure,
it is nb that leads to a correct evaluation of an average distance between baryons (treated as

point-like objects), rbb ∝ n1/3
b . Therefore, knowing nb, we can compare an actual rbb with

average distance between nucleons in nuclear matter at normal nuclear density, r0 , getting
rbb/r0 = (n0/nb)1/3.

At subnuclear densities, ρ of NS matter can be very well approximated by nbmn, where mn

is neutron rest mass. However, at supranuclear densities ρ grows nonlinearly with nb. This

7

Higher Mmax -  lower density at the center of NS 

-  

-  

-  

-  

-  

Mmax ≃ 1.4 M⊙ ⇒ ncent < 12 n0

Mmax ≃ 1.7 M⊙ ⇒ ncent < 9 n0

Mmax ≃ 2 M⊙ ⇒ ncent < 7 n0

Mmax ≃ 2.25 M⊙ ⇒ ncent < 5 n0

Mmax ≃ 2.5 M⊙ ⇒ ncent < 4 n0

NS - laboratory of high density: 
the range of available densities shrinks

Haensel et. al. Eur. Phys. J. A (2016) 52: 59 



Conclusions
• Neutron star mass - the main measurable quantity for constraints on the equation of state 

- relatively high accuracy 
- the role of the maximum mass 

• Present limit on the maximum mass (as a condition for rejecting the theory of dense matter) is still 
                                    

• Many models of dense matter consistent with the NS mass measurements (and consistent with 
nuclear experiments at low density limit) 

• Current observations of NS do not impose significant  constraints on nuclear parameter 

• X-ray observations favor large R in some tension with GW measurement of tidal deformability. 

• Confirmation of  measurement (with higher accuracy) or observation of  NS 
would exclude many soft models od dense matter (including phase transitions to hyperons and 
quarks in  the center).

Mmax(theory) > 2 M⊙

∼ 2.3 M⊙ M > 2.5 M⊙



Perspectives and future missions
• Enhanced X-ray Timing and Polarimetry eXTP - 2027 
• Advanced Telescope for High-ENergy Astrophysics ATHENA -2030s 
• Square Kilometer Array SKA - radio 
• LIGO-Virgo-KAGRA LVK gravitational waves O4, O5 runs 
• Einstein Telescope 2030s 
• Cosmic Explorer 2030s

and a bit of luck is needed
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ABSTRACT

We present an equation of state (EoS) for neutron stars using the relativistic mean-field model with
isoscalar- and isovector-meson mixing. Taking into account the results of the neutron skin thickness,
Rskin, of 208Pb reported by the PREX collaboration, the dimensionless tidal deformability of a canon-
ical neutron star observed from GW170817, and a 2.6 M� compact star implied by the secondary
component of GW190814, a new e↵ective interaction is constructed so as to reproduce the satura-
tion condition of nuclear matter and the ground-state properties of finite, closed-shell nuclei. We find
that the neutron star EoS exhibits the rapid sti↵ening around twice the nuclear saturation density,
which is caused by the soft nuclear symmetry energy, Esym. It is also noticeable that the thick Rskin

from the PREX-2 experiment can be achieved with the small slope parameter of Esym stemming from
the isoscalar-meson mixing. Thus, we speculate that the secondary component of GW190814 is the
heaviest neutron star ever discovered.

Keywords: Gravitational waves (678); Neutron stars (1108); Nuclear astrophysics (1129); Relativistic
mechanics (1391); Nuclear physics (2077)

1. INTRODUCTION

The astrophysical phenomena concerning compact
stars as well as the properties of finite nuclei and nu-
clear matter are determined by the nuclear equation
of state (EoS), characterized by the relation between
the energy density and pressure of the system. Ow-
ing to the precise observations of neutron stars, such
as the Shapiro delay measurement of a binary millisec-
ond pulsar J1614�2230 (Demorest et al. 2010; Arzou-
manian et al. 2018) and the radius measurement of PSR
J0740+6620 from Neutron Star Interior Composition
Explorer (NICER) and from X-ray Multi-Mirror (XMM-
Newton) Data (Miller et al. 2021), theoretical studies
have been currently performed more than ever to elu-
cidate neutron star physics through the EoS for dense
matter.
In addition, the direct detection of gravitational-

wave (GW) signals from a binary neutron star merger,
GW170817, observed by Advanced LIGO and Advanced

Corresponding author: Tsuyoshi Miyatsu

tsuyoshi.miyatsu@ssu.ac.kr

Virgo detectors, have placed stringent restrictions on
the mass–radius relation of neutron stars (Abbott et al.
2017, 2018, 2019). Especially, the tidal deformability
of a neutron star (Hinderer 2008; Hinderer et al. 2010)
plays an important role in constructing the EoS for neu-
tron star matter (Annala et al. 2018; Lim & Holt 2018;
Raithel et al. 2018). Moreover, the secondary compo-
nent of GW190814 with the mass of 2.6 M� poses an-
other fascinating question whether it is the lightest black
hole or the heaviest neutron star (Abbott et al. 2020).
Recently, several ideas on this new topic have been pro-
posed in astrophysics. Fattoyev et al. (2020) have in-
sisted that the 2.6 M� object is likely to be the lightest
black hole ever discovered using the nucleonic EoS. In
contrast, others support the possibility of the secondary
object of GW190814 as a neutron star (Huang et al.
2020; Biswas et al. 2021; Bombaci et al. 2021; Dexheimer
et al. 2021; Drischler et al. 2021; Ferreira & Providência
2021; Lim et al. 2021; Lopes & Menezes 2022; Miao et al.
2021; Wu et al. 2021; Wang et al. 2022).
On the other hand, a critical issue has been raised

in nuclear physics since the accurate determination of
neutron skin thickness, Rskin, of 208Pb through parity-
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the energy density and pressure of the system. Ow-
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manian et al. 2018) and the radius measurement of PSR
J0740+6620 from Neutron Star Interior Composition
Explorer (NICER) and from X-ray Multi-Mirror (XMM-
Newton) Data (Miller et al. 2021), theoretical studies
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Virgo detectors, have placed stringent restrictions on
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2017, 2018, 2019). Especially, the tidal deformability
of a neutron star (Hinderer 2008; Hinderer et al. 2010)
plays an important role in constructing the EoS for neu-
tron star matter (Annala et al. 2018; Lim & Holt 2018;
Raithel et al. 2018). Moreover, the secondary compo-
nent of GW190814 with the mass of 2.6 M� poses an-
other fascinating question whether it is the lightest black
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Recently, several ideas on this new topic have been pro-
posed in astrophysics. Fattoyev et al. (2020) have in-
sisted that the 2.6 M� object is likely to be the lightest
black hole ever discovered using the nucleonic EoS. In
contrast, others support the possibility of the secondary
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et al. 2021; Drischler et al. 2021; Ferreira & Providência
2021; Lim et al. 2021; Lopes & Menezes 2022; Miao et al.
2021; Wu et al. 2021; Wang et al. 2022).
On the other hand, a critical issue has been raised

in nuclear physics since the accurate determination of
neutron skin thickness, Rskin, of 208Pb through parity-

ar
X

iv
:2

20
9.

02
86

1v
1 

 [
nu

cl
-t

h]
  6

 S
ep

 2
02

2

D
r
a
f
t
v
e
r
sio

n
S
e
p
t
e
m
b
e
r
8
,
2
0
2
2

T
y
p
eset

u
sin

g
L AT

E
X

tw
o
c
o
lu

m
n

sty
le

in
A
A
S
T
eX

63
1

M
a
ssiv

e
n
eu

tro
n

sta
rs

w
ith

sm
a
ll

ra
d
ii

in
rela

tiv
istic

m
ea

n
-fi

eld
m
o
d
els

o
p
tim

ized
to

n
u
clea

r
g
ro

u
n
d

sta
tes

T
su

y
o
sh

i
M
iy
a
t
su

, 1
M
y
u
n
g
-K

i
C
h
e
o
u
n

, 1
K
y
u
n
g
sik

K
im

, 2
a
n
d

K
o
ic
h
i
S
a
it
o

3

1
D
e
p
a
r
t
m
e
n
t
o
f
P
h
y
s
ic
s
a
n
d
O
M
E
G

I
n
s
t
it
u
t
e
,
S
o
o
n
g
s
il
U
n
iv
e
r
s
it
y
,
S
e
o
u
l
0
6
9
7
8
,
R
e
p
u
b
lic

o
f
K
o
r
e
a

2
S
c
h
o
o
l
o
f
L
ib
e
r
a
l
A
r
t
s
a
n
d
S
c
ie
n
c
e
s
,
K
o
r
e
a
A
e
r
o
s
p
a
c
e
U
n
iv
e
r
s
it
y
,
G
o
y
a
n
g
1
0
5
4
0
,
R
e
p
u
b
lic

o
f
K
o
r
e
a

3
D
e
p
a
r
t
m
e
n
t
o
f
P
h
y
s
ic
s
,
F
a
c
u
lt
y
o
f
S
c
ie
n
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
T
o
k
y
o
U
n
iv
e
r
s
it
y
o
f
S
c
ie
n
c
e
,
N
o
d
a
2
7
8
-
8
5
1
0
,
J
a
p
a
n

A
B
S
T
R
A
C
T

W
e
p
resent

an
equ

ation
of

state
(E

oS
)
for

n
eu
tron

stars
u
sin

g
th
e
relativistic

m
ean

-fi
eld

m
od

el
w
ith

isoscalar-
an

d
isovector-m

eson
m
ixin

g.
T
akin

g
into

accou
nt

th
e
resu

lts
of

th
e
n
eu
tron

skin
th
ickn

ess,
R

sk
in ,

of
2
0
8P

b
rep

orted
by

th
e
P
R
E
X

collab
oration

,
th
e
d
im

en
sion

less
tid

al
d
eform

ab
ility

of
a
can

on
-

ical
n
eu
tron

star
ob

served
from

G
W

170817,
an

d
a
2.6

M
�

com
p
act

star
im

p
lied

by
th
e
secon

d
ary

com
p
on

ent
of

G
W

190814,
a
n
ew

e↵
ective

interaction
is

con
stru

cted
so

as
to

rep
rod

u
ce

th
e
satu

ra-
tion

con
d
ition

of
nu

clear
m
atter

an
d
th
e
grou

n
d
-state

p
rop

erties
of

fi
n
ite,

closed
-sh

ell
nu

clei.
W
e
fi
n
d

th
at

th
e
n
eu
tron

star
E
oS

exh
ib
its

th
e
rap

id
sti↵

en
in
g
arou

n
d
tw

ice
th
e
nu

clear
satu

ration
d
en
sity,

w
h
ich

is
cau

sed
by

th
e
soft

nu
clear

sym
m
etry

en
ergy,

E
sy

m
.
It

is
also

n
oticeab

le
th
at

th
e
th
ick

R
sk

in

from
th
e
P
R
E
X
-2

exp
erim

ent
can

b
e
ach

ieved
w
ith

th
e
sm

all
slop

e
p
aram

eter
of

E
sy

m
stem

m
in
g
from

th
e
isoscalar-m

eson
m
ixin

g.
T
hu

s,
w
e
sp
ecu

late
th
at

th
e
secon

d
ary

com
p
on

ent
of

G
W

190814
is

th
e

h
eaviest

n
eu
tron

star
ever

d
iscovered

.

K
eyw

ords:
G
ravitation

al
w
aves

(678);
N
eu
tron

stars
(1108);

N
u
clear

astrop
hysics

(1129);
R
elativistic

m
ech

an
ics

(1391);
N
u
clear

p
hysics

(2077)

1.
IN

T
R
O
D
U
C
T
IO

N

T
h
e

astrop
hysical

p
h
en
om

en
a

con
cern

in
g

com
p
act

stars
as

w
ell

as
th
e
p
rop

erties
of

fi
n
ite

nu
clei

an
d
nu

-
clear

m
atter

are
d
eterm

in
ed

by
th
e
nu

clear
equ

ation
of

state
(E

oS
),

ch
aracterized

by
th
e
relation

b
etw

een
th
e
en
ergy

d
en
sity

an
d

p
ressu

re
of

th
e
system

.
O
w
-

in
g
to

th
e
p
recise

ob
servation

s
of

n
eu
tron

stars,
su
ch

as
th
e
S
h
ap

iro
d
elay

m
easu

rem
ent

of
a
b
in
ary

m
illisec-

on
d
p
u
lsar

J1614�
2230

(D
em

orest
et

al.
2010;

A
rzou

-
m
an

ian
et

al.
2018)

an
d
th
e
rad

iu
s
m
easu

rem
ent

of
P
S
R

J0740+
6620

from
N
eu
tron

S
tar

Interior
C
om

p
osition

E
xp

lorer
(N

IC
E
R
)
an

d
from

X
-ray

M
u
lti-M

irror
(X

M
M
-

N
ew

ton
)
D
ata

(M
iller

et
al.

2021),
th
eoretical

stu
d
ies

h
ave

b
een

cu
rrently

p
erform

ed
m
ore

th
an

ever
to

elu
-

cid
ate

n
eu
tron

star
p
hysics

th
rou

gh
th
e
E
oS

for
d
en
se

m
atter.
In

ad
d
ition

,
th
e

d
irect

d
etection

of
gravitation

al-
w
ave

(G
W

)
sign

als
from

a
b
in
ary

n
eu
tron

star
m
erger,

G
W

170817,
ob

served
by

A
d
van

ced
L
IG

O
an

d
A
d
van

ced

C
o
rresp

o
n
d
in
g
a
u
th

o
r:

T
su

yo
sh

i
M
iy
a
tsu

tsu
y
o
sh

i.m
iy
a
tsu

@
ssu

.a
c.k

r

V
irgo

d
etectors,

h
ave

p
laced

strin
gent

restriction
s
on

th
e
m
ass–rad

iu
s
relation

of
n
eu
tron

stars
(A

b
b
ott

et
al.

2017,
2018,

2019).
E
sp
ecially,

th
e
tid

al
d
eform

ab
ility

of
a
n
eu
tron

star
(H

in
d
erer

2008;
H
in
d
erer

et
al.

2010)
p
lays

an
im

p
ortant

role
in

con
stru

ctin
g
th
e
E
oS

for
n
eu
-

tron
star

m
atter

(A
n
n
ala

et
al.

2018;
L
im

&
H
olt

2018;
R
aith

el
et

al.
2018).

M
oreover,

th
e
secon

d
ary

com
p
o-

n
ent

of
G
W

190814
w
ith

th
e
m
ass

of
2.6

M
�

p
oses

an
-

oth
er

fascin
atin

g
qu

estion
w
h
eth

er
it
is
th
e
lightest

b
lack

h
ole

or
th
e
h
eaviest

n
eu
tron

star
(A

b
b
ott

et
al.

2020).
R
ecently,

several
id
eas

on
th
is
n
ew

top
ic

h
ave

b
een

p
ro-

p
osed

in
astrop

hysics.
F
attoyev

et
al.

(2020)
h
ave

in
-

sisted
th
at

th
e
2.6

M
�
ob

ject
is
likely

to
b
e
th
e
lightest

b
lack

h
ole

ever
d
iscovered

u
sin

g
th
e
nu

cleon
ic

E
oS

.
In

contrast,
oth

ers
su
p
p
ort

th
e
p
ossib

ility
of

th
e
secon

d
ary

ob
ject

of
G
W

190814
as

a
n
eu
tron

star
(H

u
an

g
et

al.
2020;B

isw
as

et
al.2021;B

om
b
aciet

al.2021;D
exh

eim
er

et
al.

2021;
D
risch

ler
et

al.
2021;

F
erreira

&
P
rovid

ên
cia

2021;L
im

et
al.2021;L

op
es

&
M
en
ezes

2022;M
iao

et
al.

2021;
W
u
et

al.
2021;

W
an

g
et

al.
2022).

O
n

th
e
oth

er
h
an

d
,
a
critical

issu
e
h
as

b
een

raised
in

nu
clear

p
hysics

sin
ce

th
e
accu

rate
d
eterm

in
ation

of
n
eu
tron

skin
th
ickn

ess,
R

sk
in ,

of
2
0
8P

b
th
rou

gh
p
arity-

arXiv:2209.02861v1  [nucl-th]  6 Sep 2022



4 Miyatsu, Cheoun, Kim, and Saito

100

101

102

P
(M

eV
)

Danielewicz et al.
Fuchs

BigApple
FSUGarnet

FSUGold
FSUGold2

IOPB-I

100

101

102

1 2 3 4 5

(a) symmetric nuclear matter

(b) pure neutron matter

Danielewicz et al.

P
(M

eV
)

ρB / ρ0

(stiff)
(soft)

IU-FSU
NL3

PD15
TAMUC-FSUa

TM1
OMEG

Figure 2. EoS—Pressure, P , as a function of ⇢B/⇢0—for
(a) symmetric nuclear matter and (b) pure neutron mat-
ter. The shaded areas represent the constraints from ellipti-
cal flow data (Danielewicz et al. 2002) and kaon production
data (Fuchs 2006).

the BigApple and NL3 interactions. In contrast, in pure
neutron matter, the OMEG interaction shows a slow
growth above ⇢0 and then a sharp increase around 2⇢0.
At high densities, it almost satisfies the constraint from
elliptical flow data (Danielewicz et al. 2002). Here, we
can verify that the phase transition due to the matter
instability does not occur even at high densities because
the condition of dP/d⇢B > 0 is ensured in pure neutron
matter.
Since the discovery of PSR J1614�2230 with the mass

of 1.908 ± 0.016 M� (Demorest et al. 2010; Arzouma-
nian et al. 2018), the EoS for neutron stars has been
constructed so as to support 2.0 M�. However, PSR
J0952�0607, which has the largest well-measured mass
of 2.35 ± 0.17 M� with small modeling uncertainties,
has been reported very recently (Romani et al. 2022).
Furthermore, we have no reason to ignore the possi-
bility of the secondary object of GW190814 as a neu-
tron star (Abbott et al. 2020). Therefore, at present,
the maximum mass of a neutron star, Mmax, namely
the Tolman–Oppenheimer–Volko↵ (TOV) limit, might
be larger than ever.
The mass–radius relations of neutron stars are pre-

sented in Figure 3. We here employ the EoS for nonuni-
form matter in the crust region, where nuclei are taken
into account using the Thomas–Fermi calculation (Miy-
atsu et al. 2013b, 2015). It is found that only the Bi-

Figure 3. Mass–radius relations of neutron stars. The
observational data are supplemented by the constraints
from PSR J0030+0451 by a NICER view (1.44+0.15

�0.14 M�
and 13.02+1.24

�1.06 km (Miller et al. 2019) and 1.34+0.15
�0.16 M�

and 12.71+1.14
�1.19 km (Riley et al. 2019)), PSR J0348+0432

(2.01± 0.04 M�) (Antoniadis et al. 2013), PSR J0740+6620
(2.072+0.067

�0.066 M� and 12.39+1.30
�0.98 km) (Cromartie et al. 2019;

Fonseca et al. 2021; Riley et al. 2021), and the secondary
object of GW190814 (2.59+0.08

�0.09 M�) (Abbott et al. 2020).
The recent theoretical restriction using Bayesian inference is
also shown in the shaded region (Huth et al. 2022).

gApple and OMEG interactions account for both con-
straints: Mmax � 2.35 M� and the neutron star radii
from J0030+0451 (Miller et al. 2019; Riley et al. 2019)
and from PSR J0740+6620 (Riley et al. 2021). We here
argue that the TOV limit can reach 2.6 M�, and thus
the secondary component of GW190814 might be the
heaviest neutron star.
We notice that the nonlinear ! self-coupling in Equa-

tion (2) seems to be no longer necessary for support-
ing a hypermassive neutron star because its coupling
constant, c3, is very small and zero for the BigAp-
ple and OMEG interactions, respectively. Moreover,
the two interactions have a unique feature of R2.0 >
R1.4, where R2.0(1.4) is the neutron star radius with the
mass of 2.0(1.4) M�, as mentioned in Drischler et al.
(2022). Furthermore, the OMEG interaction is consis-
tent with the theoretical restriction using Bayesian in-
ference based on the combined data from astrophysical
multi-messenger observations of neutron stars and from
heavy-ion collisions of gold nuclei at relativistic energies
with microscopic calculations (Huth et al. 2022).
In Figure 4, the speed of sound, cs =

p
dP/d", in neu-

tron star matter is illustrated as a function of ⇢B/⇢0.
Because any exotic degrees of freedom in the core of a
neutron star are not included, cs reaches a plateau at
high densities. At the central density of Mmax, the Bi-
gApple, NL3, and OMEG interactions exceed cs ' 0.85,
while the others lie around the conformal limit (Alford
et al. 2013). It is thus found that cs is much larger than
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ABSTRACT

We present an equation of state (EoS) for neutron stars using the relativistic mean-field model with
isoscalar- and isovector-meson mixing. Taking into account the results of the neutron skin thickness,
Rskin, of 208Pb reported by the PREX collaboration, the dimensionless tidal deformability of a canon-
ical neutron star observed from GW170817, and a 2.6 M� compact star implied by the secondary
component of GW190814, a new e↵ective interaction is constructed so as to reproduce the satura-
tion condition of nuclear matter and the ground-state properties of finite, closed-shell nuclei. We find
that the neutron star EoS exhibits the rapid sti↵ening around twice the nuclear saturation density,
which is caused by the soft nuclear symmetry energy, Esym. It is also noticeable that the thick Rskin

from the PREX-2 experiment can be achieved with the small slope parameter of Esym stemming from
the isoscalar-meson mixing. Thus, we speculate that the secondary component of GW190814 is the
heaviest neutron star ever discovered.

Keywords: Gravitational waves (678); Neutron stars (1108); Nuclear astrophysics (1129); Relativistic
mechanics (1391); Nuclear physics (2077)

1. INTRODUCTION

The astrophysical phenomena concerning compact
stars as well as the properties of finite nuclei and nu-
clear matter are determined by the nuclear equation
of state (EoS), characterized by the relation between
the energy density and pressure of the system. Ow-
ing to the precise observations of neutron stars, such
as the Shapiro delay measurement of a binary millisec-
ond pulsar J1614�2230 (Demorest et al. 2010; Arzou-
manian et al. 2018) and the radius measurement of PSR
J0740+6620 from Neutron Star Interior Composition
Explorer (NICER) and from X-ray Multi-Mirror (XMM-
Newton) Data (Miller et al. 2021), theoretical studies
have been currently performed more than ever to elu-
cidate neutron star physics through the EoS for dense
matter.
In addition, the direct detection of gravitational-

wave (GW) signals from a binary neutron star merger,
GW170817, observed by Advanced LIGO and Advanced

Corresponding author: Tsuyoshi Miyatsu

tsuyoshi.miyatsu@ssu.ac.kr

Virgo detectors, have placed stringent restrictions on
the mass–radius relation of neutron stars (Abbott et al.
2017, 2018, 2019). Especially, the tidal deformability
of a neutron star (Hinderer 2008; Hinderer et al. 2010)
plays an important role in constructing the EoS for neu-
tron star matter (Annala et al. 2018; Lim & Holt 2018;
Raithel et al. 2018). Moreover, the secondary compo-
nent of GW190814 with the mass of 2.6 M� poses an-
other fascinating question whether it is the lightest black
hole or the heaviest neutron star (Abbott et al. 2020).
Recently, several ideas on this new topic have been pro-
posed in astrophysics. Fattoyev et al. (2020) have in-
sisted that the 2.6 M� object is likely to be the lightest
black hole ever discovered using the nucleonic EoS. In
contrast, others support the possibility of the secondary
object of GW190814 as a neutron star (Huang et al.
2020; Biswas et al. 2021; Bombaci et al. 2021; Dexheimer
et al. 2021; Drischler et al. 2021; Ferreira & Providência
2021; Lim et al. 2021; Lopes & Menezes 2022; Miao et al.
2021; Wu et al. 2021; Wang et al. 2022).
On the other hand, a critical issue has been raised

in nuclear physics since the accurate determination of
neutron skin thickness, Rskin, of 208Pb through parity-
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Backbending phenomenon 
Signature of the softening of EOS
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Fig. 4. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 3). For fixed rotational frequency f1,infx !
880 Hz and f2,infx ! 1320 Hz the MB(Req) dependence has an in-
flexion point (corresponding to the masses M(1,infx)

B = 1.91 M" and
M(2,infx)

B = 2.17 M", respectively) resulting in a region where the curve
is nearly flat. For f ∈ [ f1,infx, f2,infx] there exists a local minimum of
MB. Dashed curves correspond to a fixed total angular momentum J.
The configurations close to the local maxima are obviously stable (for
a fixed J, MB is monotonic). The evolution of an isolated star which
is losing its angular momentum is represented by the motion along a
horizontal line from right to the left (decreasing J). The loss of J in
the back-bending regime is associated with a spin up of the star.

of the inflection point, together with J = const. lines. As we
see, in this case there exists a range of MB where the decrease
of J leads to the increase of the angular frequency which is ex-
actly equivalent to back-bending. The fragment of the curve for
which M decreases as a function of ρc does not necessarily cor-
respond to the instability region – the decrease of MB at a fixed
f does not imply the decrease at a fixed J. It is only the latter
condition which indicates the instability with respect to small
axi-symmetric perturbations1.

In Figs. 4 and 6 we draw also three horizontal lines cor-
responding to fixed values of the total baryon number. A ro-
tating star losing its angular momentum moves along horizon-
tal line from the right to the left. The bottom lines correspond
to the mass MB = M(1,infx)

B ! 1.91 M" (! 1.81 M") for the
N2H1 (N1H1) EOS, at which the curves for f = f1,infx !
880 Hz (860 Hz) have a point of inflexion. The top horizon-
tal line corresponds to the different situation in which the curve
MB(Req) has an inflexion point at a higher frequency, namely
at f = 1320 Hz and 1100 Hz, for the N2H1 and N1H1 EOSs,
respectively. For baryon masses larger than the mass at this in-
flexion point, the angular momentum loss does not lead to the
decrease of angular frequency before the onset of instability is
reached, the star is all the time accelerating. The value of this
limiting masses are MB ! 2.17 M" and 1.90 M", respectively.
The intermediate horizontal line corresponds to the maximum

1 It may be shown that the configurations which realize the extrema
of the MB and M at fixed J coincide, see Harrison et al. (1965) for the
static case, and Friedman et al. (1988) for uniformly rotating configu-
rations.

Fig. 5. Same as in Fig. 3 but for the N1H1 EOS.

Fig. 6. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 5).

mass of the non-rotating stars MB = Mstat
B,max = 2.05 M" and

1.824 M".

5.2. Acceleration or slowing down close
to the Keplerian limit

The interesting difference between the cases N2H1 and N1H1
concerns the behavior of the rotating star as it starts losing
J at the Keplerian frequency fK. The question is whether the
star is then slowing down or spinning up. The actual behav-
ior can be easily deduced from the shapes of the MB(Req) [or
MB(ρc)] curves for a fixed frequency close to the Keplerian
limit. If MB is increasing as we move in the MB − Req plane
away from the Keplerian configuration [(dMB/dρc)K > 0], the
star is slowing down as it loses the angular momentum. This ef-
fect results in the S-shape of the J( f ) dependence in the back-
bending case. Otherwise [(dMB/dρc)K < 0] the isolated star
is spinning up when evolving from the Keplerian configura-
tion with J̇ < 0. The limiting case corresponds to the con-
dition (dMB/dρc)K = 0 [or (dMB/dReq)K = 0] and is repre-
sented in Fig. 4 by the curve with f = 970 Hz (the baryon
mass at this point M(K,flat)

B = 2.01 M"). For the N1H1 EOS

1016 J. L. Zdunik et al: Hyperons and back-bending in neutron stars

Fig. 2. The difference between the back-bending curves J( f ) and I( f ).
The spin-evolution track is calculated for MB = 2.15 M! and N2H1
EOS. Upper panel presents the dependence J( f ). The thicker segment
AB represents stable back-bending evolution, while dotted segment
to the right of the minimum at B consists of configurations unstable
with respect to axisymmetric perturbation. The lower panel represents
the I( f ) spin evolution track, considered in the previous work; the
back-bending behavior occurs apparently along the whole AC branch.
Actually, the BC segment of the I( f ) is astrophysically irrelevant, be-
cause configurations to the right of B are unstable.

where x is the first of the two parameters which parametrize
(label) stationary rotating stellar configurations (the second one
being J), for example x = ρc or x = Pc. Equivalently, the onset
of instability can be determined by the condition
(
∂J
∂x

)

MB=const

= 0,

(
∂J
∂x

)

M=const

= 0. (4)

The crucial difference between the dependencies J( f ) and I( f )
in the back-bending region is presented in Fig. 2; it will be
discussed in more detail in Sect. 6. The apparently “back-
bending branch” in lower panel, as defined in the previous work
(Glendenning et al. 1997), consists mostly of configurations
unstable with respect to axial perturbations. The BC segment
is astrophysically irrelevant, and the B point correspond to an
unstable termination of the back-bending branch (see Sect. 7).

5. Softening of the EOS
and the baryon-mass–equatorial-radius relation
at fixed rotation frequency

Rotation modifies the relation between the baryon mass (MB)
and the circumferential equatorial radius (Req) for equilibrium
stellar configurations. The baryon mass MB plays a special role,
because it remains constant during the evolution of solitary pul-
sars. In the present section we point out specific features of the
MB(Req) curves, which signal the presence of the back-bending

Fig. 3. Total baryon mass MB vs circumferential equatorial radius
Req for stationary configurations rotating at a fixed frequency, for the
N2H1 EOS. The curves are labeled by the rotational frequency f =
Ω/2π [Hz]. The dotted line corresponds to the onset of instability with
respect to axi-symmetric (quasi-radial) perturbations. All curves ter-
minate on the large-radius side at the mass-shedding (Keplerian) con-
figurations. The maximum baryon mass of non-rotating stars, Mstat

B,max,
is marked by a dash-dotted line.

(BB) phenomenon in rotating neutron stars. Our calculations
were performed for all the equations of state with hyperons
presented in Balberg et al. (1999). However, we present de-
tailed results (figures) only for those EOSs for which the BB
phenomenon is strongly pronounced.

In Fig. 3 we show the MB(Req) curves for stars rotating at
a fixed rotation frequency f = Ω/2π, calculated for the N2H1
EOS. An enlarged view of a particularly interesting rectangular
region of the MB−Req plane is shown in Fig. 4.

5.1. Signature of BB: Minimum of the baryon mass
at fixed frequency

As we will show, the BB phenomenon is strictly connected to
the existence of a local minimum of MB in the MB(Req) plot
at a fixed f . The softening of the EOS due the hyperonization
leads to the flattening of the MB(Req) and MB(ρc) curves (for
the case of non-rotating stars, see Balberg et al. 1999). This
effect of flattening grows with increasing rotational frequency
and for f > f1,infx rotation may even produce a local mini-
mum of MB(Req) and M(Req). The curve MB(Req) [or MB(ρc)]
at f = f1,infx has a very specific property. Namely, for this
curve first and second derivatives of MB with respect to the
central density ρc vanish at some ρc = ρc,infx, i.e., the curve has
there a point of inflexion which corresponds to baryon mass
M(1,infx)

B . Our numerical calculations for the N2H1 and N1H1
EOS give f1,infx # 880 Hz and f1,infx # 860 Hz respectively
(see Figs. 4 and 6). For f > f1,infx the curve MB(Req),
MB(ρc), . . . , exhibit a local minimum. We find that the presence
of this local minimum is an indication that for MB > M(1,infx)

B
the rotational evolution of neutron star with J̇ < 0 exhibits a BB
phenomenon in the vicinity of f # f1,infx. This is clearly seen
in Figs. 4 and 6, where we show an enlargement of the vicinity
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analysis should be performed using different pair of variables:
total stellar angular momentum J versus Ω instead of I(Ω).
High precision is particularly important because it is needed to
reliably check the secular stability of rotating configurations;
only the stable ones are interesting and observationally rele-
vant.

The paper is organized in the following way. Softening of
the EOS due to the presence of hyperons is discussed in Sect. 2.
The method allowing for a high precision of the 2-D calcu-
lations of the equilibrium configurations of rotating neutron
stars is briefly described in Sect. 3. Different formulations of
the stability criteria for rotating configurations are briefly sum-
marized in Sect. 4. In Sect. 5 we propose a method of check-
ing for the occurrence of the back-bending phenomenon by in-
specting the baryon-mass – equatorial-radius relations at fixed
values of rotation frequencies. We apply this method to sev-
eral EOSs with a hyperon softening. The interplay between the
back-bending and stability is discussed in Sect. 6, where we
study neutron-star evolution tracks in the angular-momentum –
rotation-frequency plane. In Sect. 8 we study the dependence
of the back-bending phenomenon on the EOS of the hyperonic
matter. Section 9 contains discussion of our results, including
their possible observational aspects, and concluding remarks.

2. Equation of state with hyperons

Possible presence of hyperons in dense neutron-star matter is
mainly the consequence of the Pauli principle for neutrons and
electrons, which at a sufficiently high baryon density can make
a replacement of high-energy neutrons and electrons by more
massive but slower hyperons energetically favorable. Hyperon
species H is then present above a certain threshold ρH, which
is determined by a condition involving the change of energy
of dense matter, due to addition of a single hyperon, at a fixed
pressure, µ0

H. The threshold density for H is the lowest density
at which the equality

µ0
H = µn − qHµe, (1)

is satisfied. Here, µn and µe are the chemical potentials of neu-
trons and electrons (which include rest energies), and qH is the
hyperon charge in units of e. The threshold condition given by
Eq. (1) shows that because of the high value of µe, hyperons
with negative charge are strongly preferred over the positively
charged ones. It also explains, why Σ−, and not the lowest mass
hyperon,Λ0, is usually the first hyperon to appear in dense mat-
ter. It should be stressed, however, that the hyperon-nucleon
interactions which contribute significantly to µ0

H, are poorly
known, and this implies uncertainty not only in the values of ρH

but also in the order of the hyperon appearance. Let us notice
that for some models of dense matter hyperons do not appear
in neutron stars at all, because the lowest ρH is larger than the
maximum density in neutron stars (see, e.g., Pandharipande &
Garde 1972).

The hyperon softening is particularly well visualized by the
behavior of the adiabatic index

Γ =
nb

P
dP
dnb
· (2)

Fig. 1. Equations of state of hyperonic matter calculated by Balberg &
Gal (1997); and used in this paper. Our notation is a close analogue
of that introduced by Balberg et al. (1999). Our labels N1, N1H1, and
N1H2 are their EoS1 N, EoS1 NΛΞ, and EoS1 NΛΣΞ, respectively.
Our N2H1 and N2H2 are their EoS2 NΛΞ and EoS2 NΛΣΞ, respec-
tively. For further explanations see the text.

At each threshold density ρ = ρH the function Γ(ρ) suffers a
drop. For some models, typical values of Γ " 2−3 characteris-
tic of the nucleonic matter at ρ ∼ (2−4)ρ0 can drop even down
to Γ ∼ 1 (see, e.g., Balberg et al. 1999). For other models the
drop is not so dramatic but still sizable (see, e.g., Haensel et al.
2002). The softening of the EOS by hyperonization of matter
can be also visualized by comparing the values of the maxi-
mum allowable mass for non-rotating neutron stars, Mmax, for
the EOS without hyperons, referred hereafter as the N EOS,
and those involving nucleons and hyperons (NH). Typically,
allowing for the presence of hyperons lowers the value of Mmax

by (0.3−0.6) M$ (see, e.g., Haensel 2003). The presence of
hyperons leads to a very characteristic flattening of the mass-
radius and mass-central density plot for neutron star, with a
knee taking place just after the threshold for the first hyperon
(Glendenning 1985; Balberg et al. 1999). This feature will be
important in the context of the back-bending phenomenon in
rotating neutron stars.

In present paper we use the EOSs calculated by Balberg
& Gal (1997). These EOSs are presented in Fig. 1. They are
based on phenomenological effective baryonic matter energy
functionals, resulting from effective baryon-baryon interactions
whose parameters are adjusted to reproduce the empirical prop-
erties of nuclear matter as well as the basic experimental fea-
tures of the hyperonic interactions. Two models of nucleon
matter, based on an effective nucleon-nucleon (NN) interaction,
constructed by Balberg & Gal (1997) lead to the EOSs N1 and
N2 of dense matter without hyperons (they correspond to their
models EoS1 N and EoS2 N, in the notation of Balberg et al.
1999). The model N1 corresponds to the incompressibility of
nuclear matter at saturation K0 = 240 MeV (i.e., is close to

Example of the softening of matter 
- appearance of hyperons Change  of the slope  of   function M(R) Local minima of  at fixed NS rotationM
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Fig. 4. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 3). For fixed rotational frequency f1,infx !
880 Hz and f2,infx ! 1320 Hz the MB(Req) dependence has an in-
flexion point (corresponding to the masses M(1,infx)

B = 1.91 M" and
M(2,infx)

B = 2.17 M", respectively) resulting in a region where the curve
is nearly flat. For f ∈ [ f1,infx, f2,infx] there exists a local minimum of
MB. Dashed curves correspond to a fixed total angular momentum J.
The configurations close to the local maxima are obviously stable (for
a fixed J, MB is monotonic). The evolution of an isolated star which
is losing its angular momentum is represented by the motion along a
horizontal line from right to the left (decreasing J). The loss of J in
the back-bending regime is associated with a spin up of the star.

of the inflection point, together with J = const. lines. As we
see, in this case there exists a range of MB where the decrease
of J leads to the increase of the angular frequency which is ex-
actly equivalent to back-bending. The fragment of the curve for
which M decreases as a function of ρc does not necessarily cor-
respond to the instability region – the decrease of MB at a fixed
f does not imply the decrease at a fixed J. It is only the latter
condition which indicates the instability with respect to small
axi-symmetric perturbations1.

In Figs. 4 and 6 we draw also three horizontal lines cor-
responding to fixed values of the total baryon number. A ro-
tating star losing its angular momentum moves along horizon-
tal line from the right to the left. The bottom lines correspond
to the mass MB = M(1,infx)

B ! 1.91 M" (! 1.81 M") for the
N2H1 (N1H1) EOS, at which the curves for f = f1,infx !
880 Hz (860 Hz) have a point of inflexion. The top horizon-
tal line corresponds to the different situation in which the curve
MB(Req) has an inflexion point at a higher frequency, namely
at f = 1320 Hz and 1100 Hz, for the N2H1 and N1H1 EOSs,
respectively. For baryon masses larger than the mass at this in-
flexion point, the angular momentum loss does not lead to the
decrease of angular frequency before the onset of instability is
reached, the star is all the time accelerating. The value of this
limiting masses are MB ! 2.17 M" and 1.90 M", respectively.
The intermediate horizontal line corresponds to the maximum

1 It may be shown that the configurations which realize the extrema
of the MB and M at fixed J coincide, see Harrison et al. (1965) for the
static case, and Friedman et al. (1988) for uniformly rotating configu-
rations.

Fig. 5. Same as in Fig. 3 but for the N1H1 EOS.

Fig. 6. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 5).

mass of the non-rotating stars MB = Mstat
B,max = 2.05 M" and

1.824 M".

5.2. Acceleration or slowing down close
to the Keplerian limit

The interesting difference between the cases N2H1 and N1H1
concerns the behavior of the rotating star as it starts losing
J at the Keplerian frequency fK. The question is whether the
star is then slowing down or spinning up. The actual behav-
ior can be easily deduced from the shapes of the MB(Req) [or
MB(ρc)] curves for a fixed frequency close to the Keplerian
limit. If MB is increasing as we move in the MB − Req plane
away from the Keplerian configuration [(dMB/dρc)K > 0], the
star is slowing down as it loses the angular momentum. This ef-
fect results in the S-shape of the J( f ) dependence in the back-
bending case. Otherwise [(dMB/dρc)K < 0] the isolated star
is spinning up when evolving from the Keplerian configura-
tion with J̇ < 0. The limiting case corresponds to the con-
dition (dMB/dρc)K = 0 [or (dMB/dReq)K = 0] and is repre-
sented in Fig. 4 by the curve with f = 970 Hz (the baryon
mass at this point M(K,flat)

B = 2.01 M"). For the N1H1 EOS
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Fig. 7. Angular momentum of the star J versus rotation frequency f ,
for the N2H1 EOS. Each curve corresponds to a fixed MB, whose
value in M! is displayed. Along each curve, the central density in-
creases downwards. The dotted segments correspond to configura-
tions which are unstable with respect to axi-symmetric perturbations
whereas the thick lines correspond to spin-up by angular momentum
loss. An enlarged view of the rectangular region within which the
back-bending occurs is shown in Fig. 8.

such an effect appears for supramassive stars ( f " 1030 Hz,
M(K,flat)

B = 1.96 M!, see Fig. 6)

6. Back-bending and stability: Analysis
in the J− f plane

The search for the BB phenomenon with simultaneous testing
of the stability of rotating configurations can be most conve-
niently carried out by plotting, at a fixed MB, the stellar angu-
lar momentum J versus rotation frequency f . Let us start with
the N2H1 EOS where the BB is the most pronounced. Several
curves J = J( f ) at selected values of MB, calculated for this
EOS, are shown in Fig. 7. These curves represent the evolution
of an isolated pulsar of a given baryon mass MB, as it loses its
angular momentum due to radiation of electromagnetic waves.
Along each curve, the central density ρc increases monotoni-
cally when one moves downward. For stable configurations J is
a monotonic function along this path. Any minimum indicates
the onset of the instability with respect to axi-symmetric per-
turbations. Putting it differently, for stable configurations each
value of J corresponds to one and only one value of f . The
BB manifests itself as a stable segment of the J( f ) curve with
dJ/d f < 0.

There is an important difference between the information
one can get from the analysis of the J( f ) and the usually used
I( f ) curves. Although the I( f ) can have segments with dI/d f <
0 corresponding to a back-bending in a nuclear physics
sense (Glendenning et al. 1997), the I( f ) dependence cannot
tell us whether a seemingly “back-bending branch” contains

Fig. 8. Enlargement of Fig. 7.

Fig. 9. Same as Fig. 7 but for N1H1 EOS. The dash-dotted line is the
J( f ) curve for the N1 EOS (i.e., not allowing for the presence of the
hyperons).

configurations which are stable. One can have a minimum in
J( f ) on a “back-bending” segment of I( f ) (see Fig. 2); such
a possibility was already mentioned by Spyrou & Stergioulas
(2002).

The final fate of the rotating star as its angular momentum
decreases depends on MB. If MB > Mstat

B,max, the star is supra-
massive and eventually collapses into a black hole.

For the N1H1 EOS the BB phenomenon is less pronounced
than for the N2H1 one. The spin-evolution tracks at MB =

const are shown in Figs. 9 [J( f ) curves] and 10 [zoomed
J( f ) curves in the BB region for normal configurations]. The
zoomed fragment in Fig. 10 shows how narrow, compared with
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J0952-0607
M = 2.35 ± 0.17 M⊙

distance, weak heating, and low f1 mean that the companion is
quite faint, barely bright enough for measurement with present
10 m telescope systems. Our intensive Keck campaign has
managed to measure the binary properties, constraining the
masses with sufficient precision that the lower limit on MNS
contributes to equation-of-state constraints.

We can examine the minimum required Mmax by plotting the
Gaussian probability distribution functions with Mi, σi for
observed heavy NSs in Figure 5. Here we compare the latest
measurements of the>2Me “radio selected” WD–NS MSP
J0348+0432 and J0740+6620 with the measurements
extracted from light-curve and RV measurements of spider
pulsar (BW and RB) companions. For the latter we use the
most conservative (best-fit) models with all heating effects as
summarized by D. Kandel & R. W. Romani (2022, in
preparation). To estimate the minimum value of Mmax required
by these observations, we assume that the NS mass distribution
is flat M0 above M1= 1.8Me to some cutoff value (for
this>2Me sample, results are insensitive to the underlying
distribution; values change by< 0.01Me for M−1). The log
(likelihood) for n measurements is
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These curves are plotted in the lower panel of Figure 5. We list
the medians and lower bounds at various confidence levels on
Mmax, from the likelihood ratio, for the different sample sets.

Since the spiders are appreciably heavier than the WD–NS
binaries, the 1σ Mmax bound increases by∼0.13Me,
or∼0.17Me with J0952. We have checked these bounds with
several different estimators. For example a bias-corrected,
accelerated bootstrap analysis (kindly supplied by B. Efron) of
the seven masses gives =M M2.34max  with a 2σ lower
bound of 2.17Me. Numerical simulations with random draws
and our observed errors give similar values. Of course, J0952
would constrain Mmax even more strongly if its mass
uncertainty could be reduced; with σ= 0.05Me, we would
infer s>M M2.30 1max ( ) and>2.20Me(3σ).
From studies of the millisecond-pulsar population, it seems

that the initial masses Mi of these pulsars are bimodal, with a
dominant component of Mi� 1.4Me and a 20% subpopulation
with Mi≈ 1.8Me (Antoniadis et al. 2016, and references
therein). This complicates use of the present mass to constrain
mass accretion and test evolutionary models (e.g., of magnetic
field reduction). For J0952 at our 1σ lower limit we infer that
at least 0.5Me and more likely∼1Me has been accreted.
Assuming a start from 1.4Me, three of our BWs have particularly
high accreted mass (J0952, ΔM≈ 0.95Me; J1653−0158, ΔM≈
0.77Me; J1810+1740, ΔM≈ 0.73Me). After the Shklovskii
(1970) corrections, these have some of the lowest pulsar
dipole fields known (estimated as 6.1× 107 G, 3.9× 107 G,
and 7.7× 107 G, respectively). More M and Bi measurements,
as well as additional analysis, are needed to see if this is
coincidental or causal.
Finally, we note that with a central value of 2.35Me, J0952

provides the most severe constraints on the dense-matter equation
of state. This remains true even considering the lower bound, and
this bound can be adopted with high confidence given the strong
preference for a simple heating model. Of course, we would like an
even tighter mass measurement of this especially important system.
Improved photometry in blue filters at optical minimum may be
feasible with 10m–class telescopes and excellent conditions, but
improved RVs likely await the 30m telescope era.
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Figure 5. Mass estimates for heavy NSs. The dashed curves show the two
heaviest WD–pulsar binaries with masses measured from radio pulse timing
(supplemented by WD atmosphere modeling for J0348). The solid curves show
the best mass estimates from companion spectroscopy and light-curve fitting
for four BWs (J1810, J1653, J1311, and J0952) and one RB (J2215). The
bottom panel shows the normalized Ln(Likelihood) for various combinations
of these measurements, assuming a flat distribution of masses from 1.8 Me up
to some Mmax. The inset legend gives the median estimator for Mmax as well as
the 1σ, 2σ, and 3σ lower bounds on its value, for various data subsets.
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Mass estimates for heavy NSs. The dashed curves show the two heaviest WD–pulsar binaries with masses measured from 
radio pulse timing (supplemented by WD atmosphere modeling for J0348). The solid curves show the best mass estimates 
from companion spectroscopy and light-curve fitting for four BWs (J1810, J1653, J1311, and J0952) and one RB (J2215). 
The bottom panel shows the normalized Ln(Likelihood) for various combinations of these measurements, assuming a flat 
distribution of masses from 1.8 Me up to some Mmax. The inset legend gives the median estimator for Mmax as well as the 
1σ, 2σ, and 3σ lower bounds on its value, for various data subsets. 

observed spectroscopic K and then refit with KCoM determined
from the spectroscopic fit (below), iterating to convergence.

The fit χ2 is increased by a handful of measurements several
σ from the models. The synthesized u photometry has several
such points owing to the very low S/N (per resolution element)
of the spectra in this band. The most important outliers are a
few bright g and i direct-imaging points during the “night”
phase. Many spider binaries exhibit occasional short-term
(∼1000 s) light-curve flares. Since the quiescence light curve is
needed for the light-curve fits, we optionally excise the few
points well above the model curves (marked in Figure 1).
Table 2 gives the fit values with these points first excluded, and
then included. Note that inclusion slightly decreases the fit i
and increases the mass (by∼0.7σ), while giving much larger
χ2. We therefore adopt the fit to the “trimmed” data set as
conservative.

Extinction in the direction of J0952 is estimated from the
three-dimensional dust map of Green et al. (2018), reaching its
maximal - = -

+E g r 0.05 0.02
0.03( ) mag ( = -

+A 0.14V 0.05
0.08 mag) by

0.3 kpc. Treating AV as a free parameter in the MCMC fits, we
find 0.16± 0.04 mag, consistent with the dust-map value.
Since we rely on the PS2 griz catalog magnitudes of our
comparison star, there are ∼0.02 mag zero-point uncertainties
(lacking PS2 u, we rely on the extrapolation of Finkbeiner et al.
2016). Leaving the passband calibrations free in the ICARUS
fit to the trimmed data set, we find D = + -

+u 0.07 0.10
0.08,

D = + -
+g 0.05 0.06
0.05, Δr=+0.02± 0.04, Δi=−0.02± 0.04,

and Δz=−0.02± 0.04 mag, all consistent with zero. We
therefore believe that our initial calibration was quite good. For
the untrimmed data, the outliers produce a large χ2/degrees of
freedom (DoF) and drive these color terms to larger values,
notably Δugriz=+0.27, +0.23, +0.03, −0.12, and −0.15
mag. While including these passband shifts does not strongly
change either χ2 or the fit parameters, it does slightly increase
the MCMC uncertainty ranges of other parameters (most
notably d and LH); we thus retain these in the fit, although we
omit them from Figure 4.

The fits all find i� 60°, with f1= 0.79 (companion underfilling
its Roche lobe), TN≈ 3000 K, dayside heated to∼6200 K, and
d≈ 6 kpc, larger than the dispersion-measure estimates. These
values are very similar to those of Nieder et al. (2019), but with
substantially higher precision. Interestingly, simple direct-heating
models always provide the best statistical fit; adding additional
effects required for many other spider binaries, such as companion

hot spots and surface winds, does not significantly improve the fit.
This means that our results are particularly immune to model-
dependant systematics, and the fit-parameter errors (Table 2) are
dominated by measurement uncertainties.
We next compare the Keck spectroscopy with model RVs

computed from photometric-fit companion models. As empha-
sized by Linares et al. (2018) and discussed by KR20, different
species’ temperature sensitivities cause varying line equivalent
widths (EWs) across the face of the companion. As the model
parameters change, the surface heating changes and the line
EWs vary. For J0952, metal lines dominate the cross-
correlation signal (as appropriate for our G1 correlation
spectrum); we apply metal line equivalent width EW(T)
weighting to correct center-of-mass RVs to observed center-
of-light values (see KR20). If we (inappropriately) apply
Balmer EW(T) weighting, the RV amplitude increases to
384± 5 km s−1, so again our choice is conservative.
We always exclude the low-significance correlations with

R< 2 in the RV MCMC fits (marked with black crosses in
Figure 3; note that some crossed points follow the expected
curve, but many are quite discrepant). The remaining χ2 is in
fact dominated by three outlier points with small uncertainties
(marked with green crosses in Figure 3). In our “trimmed” fit
for the mass we exclude these three points. Again, this is
conservative, as with them the K increases slightly (by 0.4σ).
The lower section of Table 2 gives the RV fit parameters and
their uncertainties. The mass difference in the “All” column is
dominated by the smaller i of the “All” photometric fit.

4. Mass Implications and Conclusions

In the quest for precision mass measurements from spider
binaries, J0952 has the advantage that the complex modeling
effects required to fit other spiders (hot spots, wind flows,
extreme gravity darkening) are not needed. This is a natural
consequence of its relatively large Pb, weak pulsar heating, and
low Roche-lobe filling factor. On the other hand, the large

Table 2
Light-curve/RV-fit Results for J0952a

Parameters Trimmed All

i ( deg) -
+59.8 1.9
2.0

-
+58.5 1.8
1.9

f1 0.79 ± 0.01 0.77 ± 0.01
LH /1034 (erg s−1) -

+3.81 0.43
0.46

-
+6.22 0.77
0.88

TN(K) -
+3085 80
85

-
+3206 95
100

dkpc -
+6.26 0.40
0.36

-
+7.60 0.82
0.74

χ2/DoF 286/(298-11)[1.00] 451/(314-11)[1.49]

KCoM (km s−1) 376.1 ± 5.1 379.1 ± 6.8
MNS(Me) 2.35 ± 0.17 2.50 ± 0.20
MC(Me) 0.032 ± 0.002 0.034 ± 0.002
χ2/DoF 55/(40-2)[1.4] 90/(43-2)[2.2]

Note.
a Also fitted: AV, Δu, Δg, Δr, Δi, and Δz. See the text.

Figure 4. Corner plot from the MCMC light-curve fit to the “trimmed”
photometry points. Contours are at 0.5σ, 1.0σ, 1.5σ, and 2σ.
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Inclination:  

Pulsar mass: 
 

   at   confidence level 

                                                    at   confidence level 

Companion mass:         

i = 60o

2.35 ± 0.17 M⊙ ⇒ Mmax > 2.19 M⊙ 1σ

Mmax > 2.09 M⊙ 3σ

0.032 ± 0.002 M⊙


