Sympozjum SHE 2017 "Challenges in the studies of super-heavy nuclei and atoms"

Kazimierz Dolny 10-14.09.2017

IIIIA

```
Organizacja –
UMCS, NCBJ, UW i ZIBJ-Dubna
ZIBJ – sponsorowało około 70
uczestników
Statystyka - uczestników 120
referatów 88 (35 - sesje plenarne
53 - sesje równoległe)
```

```
Referaty polskich uczestników
sesje plenarne - 6
sesje równoległe - 7
chairmani - 4 sesje plenarne
```

Tematyka:

- Podsumowanie osiągnięć ostatnich lat w produkcji, badaniach własności spektroskopowych, chemicznych i atomowych pierwiastków super-ciężkich.
- Urządzenia badawcze i plany budowy nowych dedykowanych akceleratorów i bardziej wydajnych układów detekcyjnych.
- Teoretyczne metody opisu własności SHE..

Próby odpowiedzi na pytania:

- Jakie są najbardziej efektywne metody wytworzenia nowych nieznanych pierwiastków i nowych cięższych izotopów znanych pierwiastków?
- Gdzie są granice wyspy stabilności i tablicy nuklidów?
- Jakie są własności jąder i atomów super-ciężkich?

Presently Working Experimental Set Ups in the World

Dubna Gas Filled Separator (Russia) SHIP (Darmstadt, Germany) Berkeley Gas Filled Separator (USA) GARIS (Saitama, Japan) VASSILISSA (Dubna, Russia) LIZE3 (GANIL, France) RITU (JYFL, Finland) FMA (Argonne, USA) JAERI-RMS (Tokai, Japan) TASCA (Darmstadt, Germany)

Spectroscopy studies
 RDT – Recoil Decay Tagging
 FPS – Focal Plane Spectroscopy

Maksymalne eksperymentalne wartości przekrojów czynnych na produkcję SHE

Wniosek: ograniczenia eksperymentalne σ > 100 fb zwiększyć intensywność wiązki ! Czasy życia

Y. Ts. Oganessian

Wniosek: $T_{1/2}$ rośnie ze wzrostem liczby neutronów. $T_{1/2}$ maleje ze wzrostem liczby protonów

Badania własności chemicznych

A.V. Yakushev

Teoria - W. Nazarev Uwzględnienie efektów rela położenie orbit elektronowy

W 2013 (grupa NZ) uwzględniając efekty relatywistyczne obliczono prawidłową temperaturę topnienia Hg.

Czy Og jest gazem szlachetnym ?

 $T_{Top} \approx 150^{\circ} \text{ C}$

C_e - electron localization function ½ - jednorodny gaz Fermiego

Efekty relatywistyczne rosną jak Z² **Relativistic effects in Inie ciągłe Inie przery**

linie ciągłe – rel. linie przerywane –nonrel.

7s- and 7p_{1/2}-elements are strongly stabilized due to relativistic effects Experimental method: adsorption on noble metals from the gas phase

A.V. Yakushev

Comparative studies of Sg with Mo and W

Science 19 September 2014: Vol. 345 no. 6203 pp. 1491-1493 Synthesis and detection of a seaborgium carbonyl complex

- Pomiary mas on line GSI
- Spektroskopia SHE GSI, Dubna, Riken {koincydencje α - γ (EC), ER- γ (EC) }

Plany na przyszłość:

- Metody wytworzenia nowych nieznanych pierwiastków i nowych cięższych izotopów znanych pierwiastków superciężkich.
- Badania własności spektroskopowych.
- Badania własności atomowych
- Nowe urządzenia badawcze.

Jak produkować pierwiastki o Z > 118 ?

Problemy eksperymentalne: Wiązka ⁴⁸Ca wymaga targetu o Z > 98.

Możliwości:Z=99 ^{252}Es , ^{254}Es $T_{1/2} = 472$ d, 275.7 dZ=100 ^{257}Fm $T_{1/2} = 100.5$ d

<u>Alternatywy:</u> cięższe pociski \rightarrow dużo mniejsze przekroje czynne

Ekperymenty 2007/2008	⁶⁴ Ni+ ²³⁸ U→ ³⁰²	120* ← ⁵⁸ Fe+ ²⁴⁴ Pι
	GSI	Dubna
Ograniczenia przekrojów czynnych	< 0.1 pb	< 0.4 pb
Eksperymenty 2010/2014	⁵⁰ Ti + ⁵⁰ Ti + ⁵⁴ Cr +	²⁴⁹ Bk → ²⁹⁹ 119* ²⁴⁹ Cf → ²⁹⁹ 120* ²⁴⁸ Cm → ²⁹⁹ 120*

Nowy mechanizm reakcji lub intensywniejsze wiązki?

How to get there?

A quest for predictive theory of production cross sections (excitation functions)

What are best reactions?

Multi-neutron transfer?

FRIB

MICHIGAN STATE

- Exotic beams (far into the future)?
- Is cold fusion really dead?

W. Nazarewicz, SHE 2017 16 W. Nazarewicz

3D TDHFB

Yuri Oganessian SHE-2017, Sept. 10-14, 2017, Kazimierz Dolny, Poland

According to the TD HFB calculations of U + U reaction, a supper heavy fragment Z \approx 120, A \approx 300 may produced only at the beam energy E_{LAB}> 10 MeV A with an excitation energy E_X> 300 MeV. The probability of survival of such a nucleus is extremely small.

A.V. Karpov and V.V. Saiko, Phys. Rev. C 96, 024618 (2017)

Reakcja fuzja-wyparowanie. Zderzenie jądrojądro, które może doprowadzić do syntezy SHE.

$\sigma(\text{synthesis}) = \pi \lambda^2 \sum_{l=0}^{\infty} \sigma_l (\text{cap}) P_l (\text{fusion}) P_{\text{xn}}^l (\text{survive})$

FBD

W. J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński, Acta Phys. Pol. 34, 2049 (2003).
W. J. Świątecki, K. Siwek-Wilczyńska, and J. Wilczyński, Phys. Rev. C 71, 014602 (2005).

T. Cap, K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C83, 054602 (2011) K. Siwek-Wilczyńska, T.Cap, et al.. Phys. Rev. C86 014611 (2012)

$$\sigma$$
(synthesis) = $\pi \lambda^2 \sum_{l=0}^{lmax} (2l+1) P_l$ (fusion) P_l (survive)

Imax – obliczone z wartości przekroju czynnego na wychwyt (capture).

$$\sigma_{cap}(E) = \pi \lambda^2 \sum_{l=0}^{\infty} (2l+1)T_l \approx \pi \lambda^2 (l_{\max}+1)^2$$

pół-empiryczna formula

$$\sigma_{cap}(E) = \pi R_{\sigma}^{2} \left[X \sqrt{\pi} \left(1 + erf \ X \right) + \exp(-X^{2}) \right] \frac{w}{E \sqrt{2\pi}}$$

gdzie:
$$X = \frac{E - B_{0}}{\sqrt{2w}}, \quad erf \ X - \text{Gaussowska funkcja błędu}$$

Formuła wyprowadzona przy założeniu:

- Gaussowskiego kształtu rozkładu barier na reakcje fuzji
- Klasycznej formuły $\sigma_{fus}(E,B)=\pi R^2(1-B/E)$

W. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński Phys. Rev. C 71 (2005) 014602,

Acta Phys. Pol. B34(2003) 2049

Systematyka 3 parametrów B_0 , W, R_σ uzyskana poprzez dopasowanie formuły do 48 eksperymentalnie wyznaczonych około barierowych krzywych wzbudzenia na reakcje fuzji w zakresie 40 < Z_{CN} < 98 (K. Siwek-Wilczyńska, J. Wilczyński Phys. Rev. C 69 (2004) 024611)

P_l (fusion)

J. Błocki, W. J. Świątecki, Nuclear Deformation Energies, Report LBL 12811 (1982)

$$R_2$$
 d_1 R_1

Równanie dyfuzji Smoluchowskiego dla potencjału parabolitycznego

$$\begin{split} \lambda &= (d_1 + d_2)/(R_1 + R_2) - \text{parametr} \\ & \text{charakteryzuj} acy szyjkę \\ \rho &= r/(R_1 + R_2) - \text{odległość środków kul} \\ \Delta &= (R_1 - R_2)/(R_1 + R_2) - \text{parametr asymetrii} \end{split}$$

 P_{l} (fusion) = $\frac{1}{2}(1 - erf\sqrt{H_{l}/T})$

H₁ - bariera dla fuzji T - temperatura układu

P_l (survive) – model statystyczny

Dane wejściowe - dla wszystkich jąder w kaskadzie deekscytacji

- masy w stanie podstawowym,
- bariery na rozszczepienie,
- poprawki powłokowe oraz deformacje jąder (w stanie podstawowym i siodle).

W naszych obliczeniach używaliśmy danych wyznaczonych z użyciem warszawskiego modelu mikro-makro z uwzględniem kształtów nieosiowych.

Systematyka parametru s_{inj} uzyskana z dopasowania do eksperymentalnych wartości przekrojów czynnych dla reakcji ⁴⁸Ca + X (fuzja-wyparowanie xn)

K. Siwek-Wilczyńska et al. Phys. Rev. C86 (2012) 014611

Nowe izotopy znanych pierwiastków produkowane w procesach xn fuzja-wyparowanie

K. Siwek-Wilczyńska et al. Phys. Rev. C86 (2012) 014611

Eksperyment z silnie radioaktywnym targetem - cztery izotopy kalifornium. Wytworzenie nowych izotopów Og i Lv w reakcjach gorącej fuzji (xn)

Produkcja nowych izotopów znanych SHE w procesach fuzja-wyparowanie z emisją cząstek naładowanych pxn and α xn:

$${}^{48}Ca + X \rightarrow {}_{Z}{}^{A}CN^* \rightarrow {}_{Z-1}{}^{(A-1)-x} ER + p + xn$$

$${}^{48}Ca + X \rightarrow {}_{Z}{}^{A}CN^* \rightarrow {}_{Z-2}{}^{(A-4)-x} ER + \alpha + xn$$

Y. Ts. OganessianH. HofmannG. AdamianK. Siwek-Wilczyńska

$$\begin{split} V_{p} &= 0.106 \; (Z_{CN} - 1) \; - \; 0.9 \; (\text{MeV}) \\ V_{\alpha} &= 2.88 \; (Z_{CN} - 2) / [1.47 (A_{CN} - 4)^{1/3} + \; 4.642] \; (\text{MeV}) \end{split}$$

W. Parker et al. PRC 44 (1991) 774

- z systematycznych badań widm protonów i alf w procesach fuzja-wyparowanie w bardzo ciężkich układach.

Przewidywania dla reakcji pxn - Z = 113 - 116

Solid lines $Vc = 0.106 (Z_{CN} - 1) - 0.9 (MeV)$ W. Parker et al.. PRC 44 (1991) 774 Dash lines $Vc + 4.0 \text{ MeV} (\sim 15 \text{ MeV})$

Nowe izotopy znanych pierwiastków od Cn do Lv produkowane w procesie αxn

Solid line $Vc = 2.88(Z_{CN}-2)/[1.47(A_{CN}-4)^{1/3}+4.642]$

							122					Æ.										
				121																		
				120				(\bigcirc	0							
	t						119										\bigcirc	0				
							118	Og								0	118 294 0.9 ms	€	0			
	oton						117	Ts							****	0	117-293 •14 ms	117 294 78 ms		•		
	pro						116	Lv						•**	116 290 7.1 ms	116-291 10 ms	116 292 18 ms	116 293 61 ms	8	1		
							115	Мс					115-287 -32 ms	115 288 87 ms	115 289 0.22 s	115 290 16 ms		8	•	•		
		114	FI									114 285 0.18 s	114 286 0.13 s	114 287 0.48 s	114 288 0.80 s	114 289 2.6 s	8	•				
		113	Nh			<mark>113 278</mark> 0.24 ms				113 282 73 ms	113 283 8.10 s	113 284 0.48 s	113 285 5:5 s	113 286 20 s	•	•		•				
	112	Cn				Cn 277 0,7 ms				Cn 281 0.14 s	Cn 282 0,82 ms	Cn 283 28 s	Cn 284 97 ms	Cn 285 29 s		•						
		Rg 272 1.6 ms		Rg 274 6.4 ms				Rg 278 4.2 ms	Rg 279 0.17 s	Rg 280 3.6 s	Rg 281 26 s	Rg 282 0.5 s										
9 S	Ds 270 100 6.0	Ds 271		Ds 273 0,17 ms				Ds 277 8,2 ms		Ds 279 0.20 s		Ds 281 11.1 s		\bigcirc	xr	n cro	oss	sec	tion	> 1	00 f	b
18 S	Ha I IIIa	Mt 270 5.0 ms				Mt 274 0,44 s	Mt 275 9,7 ms	Mt 276 0.72 s	Mt 277	Mt 278 7.7 s				\bigcirc	X	n cr	oss	sec	tion		10 f	h
7 S	Hs 268 0.38 s	Hs 269 9.7 s	Hs 270 ≈20 s	Hs 271 4 s		Hs 273 135 s		Hs 275 0.19 s		Hs 277 3 ms	• —				p)	kn c	ross	s se	ctio	n >	1 fb	
6	Bh 267 17 s			Bh 270 61 s	Bh-271	Bh 272 9.8 s		Bh 274 53 s						neu	tron						α	٢n
5	Sg 266 ≈0.44 s	Sg 267 80 s		55 269 185 s	/	5g 271 1,9 m	7		168		170		172		174		176		178		180	
									100				112		1/4		170		170		100	

SHE Factory

SHE Factory Building

High-current cyclotron DC-280

New facilities:

- New gas-filled separator Preseparator SHELS

- Etc.

Plan of SHE search experiments Hideto En'y RIKEN

YEAR	Reaction	ECR IS	ACC.	Spectr ometer	Beam	Intensity (puA)				
2017	Fusion Barrier	18GHz	RILAC1	GARIS1	Cocktail	0.5				
	²⁴⁸ Cm+ ⁵⁰ Ti→Og	18GHz	RILAC1	GARIS2	50-Ti	~0.5				
	²⁴⁸ Cm+ ⁵¹ V→119 from this December	28GHz	28GHz RILAC2 GARIS2 +RRC		51-V	~5				
2018	²⁴⁸ Cm+ ⁵¹ V→119	28GHz @RRC	RILAC2 +RRC	GARIS2	51-V	~5				
2019	²⁴⁸ Cm+ ⁵¹ V→119	28GHz @RRC	RILAC2 +RRC	GARIS2	51-V	~5				
	²⁴⁸ Cm+ ⁵¹ V→119	28GHz @RILAC	RILAC1 +SCC	GARIS3	51-V	~5				
2020	²⁴⁸ Cm+ ⁵¹ V→119 ²⁴⁸ Cm+ ⁵¹ V→119	RUN in parallel until discovery								

Can only be done with strong commitment of collaboration with ORNL

Excellent perspectives for Heavy and SHE Experiments at GANIL-SPIRAL2

M. Lewitowicz

ALBEGA - a new device for alpha-beta-gamma spectroscopy

Decay spectroscopy after chemistry:

²⁶⁵Sg as Sg(CO)₆ ²⁶⁹Hs as Hs(CO)₅ or HsO₄ ^{288,289}Fl as volatile metal

The goals for all of us in 30 years

- Synthesize 119,120th elements
- Complete the 8th row
- Reach the island of stability
 - We do not know how (YET).
 - Need new Ideas.

Hideto En'yo

 We need to satisfy the governments to get facility better. ?WORLD COMPETITION?

- We do not need to do such among us.
- We collaborate. Share the beams/ targets/ expertise.
- We avoid overlap. We need efficient approaches.

Element 117Ts tenessine