Shape isomers and possible shape-coexistences in Pt, Hg and Pb isotopes with N \leq 126

Krzysztof Pomorski, Uniwersytet MCS, Lublin

Międzygórze, May 28th, 2020

My first Thursday seminar at Hoża *

Vol. B1 (1970)

ACTA PHYSICA POLONICA

Fasc. 1

THE SEARCH FOR THE COMMON SYMMETRY OF PAIRING+ +QUADRUPOLE FORCES IN NUCLEAR THEORY

BY K. POMORSKI AND S. SZPIKOWSKI

Department of Theoretical Physics, M. Curie-Skłodowska University, Lublin*

(Received April 11, 1969; Revised paper received September 11, 1969)

Pairing forces connected with the R_3 group and quadrupole forces with the SU_3 group were taken together to generate the common symmetry group. It has been proved that the resulting group is the symplectic group in (N+1)(N+2) dimension, where N is the major shell number. The special case of Sp(6) for N = 1 is discussed in detail.

* Warszawa, October 31st, 1968.

Results presented here were obtained in collaboration with:

- Johann Bartel, IPHC & UdS, Strasbourg, France,
- Artur Dobrowolski, UMCS, Lublin,
- Herve Molique, IPHC & UdS, Strasbourg, France,
- Bożena Nerlo-Pomorska, UMCS, Lublin,
- Costel M. Petrache, CSNSM, CNRS-IN2P3, Orsay, France
- Christelle Schmitt, IPHC & UdS, Strasbourg, France,

and has been published in:

- K.P., B.N.P., A. Dobrowolski, J. Bartel, C. M. Petrache, EPJA 56, 107, (2020),

- K.P., B.N.P, J. Bartel, H. Molique, Bulg. J. of Physics, 46, 269 (2019).
- K.P., B.N.P., J. Bartel, C. Schmitt, EPJA 53, 59 (2017).
- C. Schmitt, K.P., B.N.P., J. Bartel, Phys. Rev. C 95, 034612 (2017).

Program of my presentation:

- Short description of the theoretical model,
- Fourier expansion of nuclear shapes,
- New description of non-axial shapes of deformed nuclei,
- Test of convergence of the Fourier expansion,
- Potential energy surfaces of $^{166-204}$ Pt isotopes,
- Potential energy surfaces of $^{172-212}$ Hg isotopes,
- Potential energy surfaces of $^{174-220}$ Pb isotopes,
- Quadrupole moments and moments of inertia in the g.s. and SD minima,
- Summary and conclusions.

Theoretical model:

- Macroscopic-microscopic approximation of nuclear energy,
- Lublin-Strasbourg-Drop [K.P., J. Dudek, PRC 67, 044316 (2003)],
- Yukawa-folded single-particle potential [K.T.R. Davies, J.R. Nix, PRC 14, 1977 (1976)],
- Strutinsky shell-correction method with the 6^{th} order corr. polynomial,
- BCS theory, monopole pairing, approximate particle number projection,
- Fourier parametrisation of nuclear shapes [K.P. et al. APPB Sup. 8, 667 (2015)],
- Considered shapes: non-axial, quadrupole, octupole, hexadecapole, and higher,
- Moment of inertia evaluated within the cranking model,
- Calculations are preformed for 54 even-even isotopes of Pt, Hg and Pb.

All parameters of the calculation are standard and fixed years ago.

Nuclear energy functional and the liquid drop model

The one-body density of nucleus and the corresponding energy-density are:

$$ho = A \int \int \ldots \int \Psi^{\star} \Psi \, d au_2 \cdots d au_A \,,$$
 $\eta = \int \int \ldots \int \Psi^{\star} \hat{H} \Psi \, d au_2 \cdots d au_A \,.$

The total energy (B) of nucleus can be decomposed in the following way:

$$\begin{split} B &= \int_{V} \eta \, d^{3}\mathbf{r} = b_{\mathrm{vol}}A + \int_{\Sigma_{R}} d\sigma \int_{0} (\eta - b_{\mathrm{vol}} \rho) \, dr_{\perp} \\ &= b_{\mathrm{vol}} \int_{V} d^{3}\mathbf{r} + \gamma^{(0)} \int_{\Sigma_{R}} d\sigma + \gamma'_{\kappa}a \int_{\Sigma_{R}} \kappa d\sigma + \frac{1}{2} \gamma''_{\kappa\kappa}a^{2} \int_{\Sigma_{R}} \kappa^{2} d\sigma + \gamma'_{\Gamma}a^{2} \int_{\Sigma_{R}} \Gamma d\sigma + \dots \\ &= b_{\mathrm{vol}}A + b_{\mathrm{surf}}A^{2/3} + b_{\mathrm{curv}}A^{1/3} + b_{\mathrm{curG}}A^{0} + \dots \longrightarrow \quad \mathrm{LSD} \; . \end{split}$$

Here κ and Γ are the first order and the second order (Gauss) curvatures respectively: $\kappa = \frac{1}{\kappa} + \frac{1}{\kappa}$ and $\Gamma = \frac{1}{\kappa}$.

$$\kappa = rac{\Gamma}{R_1} + rac{\Gamma}{R_2} \quad ext{and} \quad \Gamma = rac{\Gamma}{R_1 \cdot R_2},$$

where R_1 and R_2 are the local main radii of the surface.

Fourier expansion of nuclear shapes *

The shape of nucleus in the cylindrical coordinates can be expressed as:

$$\frac{\rho_s^2(z)}{R_0^2} = \sum_{n=1}^{\infty} \left[a_{2n} \cos\left(\frac{(2n-1)\pi}{2} \frac{z-z_{sh}}{z_0}\right) + a_{2n+1} \sin\left(\frac{2n\pi}{2} \frac{z-z_{sh}}{z_0}\right) \right] ,$$

Here R_0 is radius of spherical nucleus and $2z_0$ is length of deformed nucleus.

Optimal coordinates:

$$\begin{cases} q_2 = a_2^{(0)}/a_2 - a_2/a_2^{(0)} \ , \\ q_3 = a_3 \ , \\ q_4 = a_4 + \sqrt{(q_2/9)^2 + (a_4^{(0)})^2} \ , \\ q_5 = a_5 - (q_2 - 2)a_3/10 \ , \\ q_6 = a_6 - \sqrt{(q_2/100)^2 + (a_6^{(0)})^2} \ . \end{cases}$$
$$a_{2n}^{(0)} = (-1)^{n-1} \frac{32}{\pi^3 (2n-1)^3} - \text{expansion}$$
coefficients of a sphere.

Non-axial shapes:

$$egin{aligned} m{\eta} &= (b-a)/(a+b) \
ho_s^2(z) &= a(z)b(z) \end{aligned}$$

^{*}K. Pomorski, B. Nerlo-Pomorska, J. Bartel, and C. Schmitt Acta Phys. Pol. B Supl. 8 (2015) 667, C. Schmitt, K. Pomorski, B. Nerlo-Pomorska, and J. Bartel, Phys. Rev. C **95** (2017) 034612.

Potential energy surface of 228 Ra on the (q_2, q_3) plane*

Here: q_2 – elongation ; q_3 – left-right asymmetry

*C. Schmitt, K. Pomorski, B. Nerlo-Pomorska, and J. Bartel, Phys. Rev. C 95 (2017) 034612.

Potential energy surface of 182 Hg on the (q_2, q_4) plane

Potential energy surface of 182 Hg on the (q_2, q_3) plane

Relation between (q_2,η) and (eta,γ) for spheroid

Here $\eta = (b-a)/(a+b)$ and $q_2 pprox (c/R_0 - R_0/c)$, where $a \cdot b \cdot c = R_0^3$.

Potential energy surface of 182 Hg on the (q_2, η) plane

Role of higher order deformations

Similar effect is also observed in other isotopes.

Role of higher order deformations

In all investigated cases the influence of higher than q_4 deformations is negligible in the vicinity of local minima.

Potential energy surface of $^{166-204}$ Pt isotopes on the (q_2,q_4) plane, when $q_3=0$ and $\eta=0.$

Potential energy surface of $^{166-204}$ Pt isotopes on the (q_2,q_3) plane for $\eta=0$ and $q_4(min)$.

Potential energy surface of $^{166-204}$ Pt isotopes on the (q_2,η) plane for $q_3=0$ and $q_4(min)$.

PES of $^{166-172}$ Pt on the (q_2,η) plane minimized with respect q_3 and q_4

Notice: ¹⁷⁰Pt and ¹⁷²Pt are triaxial in the ground state.

PES of $^{174-180}$ Pt on the (q_2,η) plane minimized with respect q_3 and q_4

Notice: ¹⁷⁴Pt is triaxial in the ground state.

PES of $^{182-188}$ Pt on the (q_2,η) plane minimized with respect q_3 and q_4

Notice: possible shape-coexistence in $^{182-188}$ Pt and superdeformed isomers in $^{186-188}$ Pt isotopes.

PES of $^{190-196}$ Pt minimized with respect q_3 and q_4

Notice: ^{190–192}Pt isotopes are oblate in the ground states and have superdeformed isomers.

Here $\eta = 0$.

Potential energy surface of $^{174-212}$ Hg isotopes on the (q_2,η) plane for $q_3=0$ and $q_4(min)$.

Potential energy of Hg isotopes minimized with respect of (q_3, q_4) as function of q_2

Exp. energies of the SD minima (•) are from [A. Lopez-Martens et al., Prog. Part. Nucl. Phys. 89, 137 (2016).]

Potential energy surface of $^{180-218}$ Pb isotopes on the (q_2,η) plane for $q_3=0$ and $q_4(min)$.

Potential energy of Pb isotopes minimized with respect of (q_3, q_4) as function of q_2

Exp. energies of the SD minima (•) are from [A. Lopez-Martens et al., Prog. Part. Nucl. Phys. 89, 137 (2016).]

Quadrupole moment and moment of inertia of 194 Pb in the SD minimum

Exp. data a taken from [A. Lopez-Martens et al., Prog. Part. Nucl. Phys. 89, 137 (2016).]

Α

Our newest results on the fission fragment mass-yields and the PES's of Pt-Rn nuclei are in: K.P., A. Dobrowolski, Rui Han, B. Nerlo-Pomorska, M. Warda, Z.G. Xiao, Y.J. Chen, L.L Liu, J.L. Tian, Phys. Rev. C , accepted for publication, (2020). Preprint is in arXiv:2001.08652.

Summary and conclusions:

- New, rapidly convergent Fourier expansion of nuclear shape is used,
- An effective six dimensional set of the Fourier deformation parameters was used to describe the nuclear potential surfaces,
- The role of higher multipolarity deformations q_5 and q_6 is shown to be in practice negligible,
- Yukawa-folded mean field describes well shell structure of Pt, Hg and Pb isotopes.
- The mac-mic model with the LSD macroscopic energy reproduces quite precisely the equilibrium deformations of all investigated nuclei.
- Several shape isomers are predicted in Pt, Hg, and Pb nuclei.

Thank you for your attention

Potential energy surface of $^{174-212}$ Hg isotopes on the (q_2,q_3) plane for $\eta=0$ and $q_4(min)$.

Potential energy surface of $^{182-220}$ Pb isotopes on the (q_2,q_3) plane for $\eta=0$ and $q_4(min)$.