

Three-dimensional structure of the nucleon from Lattice QCD

Krzysztof Cichy

Adam Mickiewicz University, Poznań, Poland

Supported by the National Science Center of Poland SONATA BIS grant No. 2016/22/E/ST2/00013 (2017-2022) OPUS grant No. 2021/43/B/ST2/00497 (2022-2026)

Outline:

Introduction GPDs from lattice: – how to access – reference frames – results Prospects/conclusion

Many thanks to my Collaborators for work presented here:

C. Alexandrou, S. Bhattacharya, M. Constantinou, J. Dodson,

- X. Gao, K. Hadjiyiannakou, K. Jansen, A. Metz, J. Miller,
- S. Mukherjee, P. Petreczky, A. Scapellato, F. Steffens, Y. Zhao

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 1 / 30

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 2 / 30

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:
 - spatial distribution of partons in the transverse plane, \star
 - mechanical properties of hadrons, \star
 - hadron's spin decomposition, \star

Krzysztof Cichy

NAS report 2018

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:
 - * spatial distribution of partons in the transverse plane,
 - * mechanical properties of hadrons,
 - \star hadron's spin decomposition,
- reduce to PDFs in the forward limit, e.g. H(x, 0, 0) = q(x),
- their moments are form factors, e.g. $\int dx H(x,\xi,t) = F_1(t)$.

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data? However:

knowing something from first principles is always desirable,

Introduction Nucleon structure

Lattice QCD Quasi-distributions Quasi-GPDs

Setup

Results

Summary

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,

Quasi-GPDs Setup

Quasi-distributions

Nucleon structure

Introduction

Lattice QCD

Results

Summary

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,
- other kinds of functions very difficult to extract solely from experiment: GPDs, TMDs, twist-3, ...

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,
- other kinds of functions very difficult to extract solely from experiment: GPDs, TMDs, twist-3, ...

Hence, lattice extraction of partonic functions is a well-justified aim!

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,
- other kinds of functions very difficult to extract solely from experiment: GPDs, TMDs, twist-3, ...

Hence, lattice extraction of partonic functions is a well-justified aim!

Problem:

PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian:

$$q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle$$

where: $\xi^- = \frac{\xi^0 - \xi^3}{\sqrt{2}}$ and $\mathcal{A}(\xi^-, 0)$ is the Wilson line from 0 to ξ^- .

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,
- other kinds of functions very difficult to extract solely from experiment: GPDs, TMDs, twist-3, ...

Hence, lattice extraction of partonic functions is a well-justified aim!

Problem:

PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian:

$$q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle,$$

inaccessible where: $\xi^- = \frac{\xi^0 - \xi^3}{\sqrt{2}}$ and $\mathcal{A}(\xi^-, 0)$ is the Wilson line from 0 to ξ^- . on the lattice

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic structure and the lattice

on the lattice...

Do we need to know partonic functions from the lattice? Maybe it is not needed if we have huge expertise in fitting PDFs from abundant experimental data?

However:

- knowing something from first principles is always desirable,
- good knowledge only of unpolarized and helicity PDFs,
- transversity PDFs not much constrained by experiment,
- other kinds of functions very difficult to extract solely from experiment: GPDs, TMDs, twist-3, ...

Hence, lattice extraction of partonic functions is a well-justified aim!

Problem:

PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian:

$$q(x) = \frac{1}{2\pi} \int d\xi^- e^{-ixp^+\xi^-} \langle N | \overline{\psi}(\xi^-) \Gamma \mathcal{A}(\xi^-, 0) \psi(0) | N \rangle,$$
 inaccessible

where: $\xi^- = \frac{\xi^0 - \xi^3}{\sqrt{2}}$ and $\mathcal{A}(\xi^-, 0)$ is the Wilson line from 0 to ξ^- .

Recently: new direct approaches to get *x*-dependence.

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 4 / 30

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution

Nucleon structure Lattice QCD

Quasi-distributions Quasi-GPDs

Introduction

Setup

Results

Summary

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?

Introduction Nucleon structure

Lattice QCD Quasi-distributions Quasi-GPDs

Setup

Results

Summary

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:
 - \star computable on the lattice,
 - * having a well-defined continuum limit (renormalizable),
 - * perturbatively factorizable into PDFs.

Introduction Nucleon structure

Lattice QCD Quasi-distributions Quasi-GPDs

Setup

Results

Summary

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Partonic functions from Lattice QCD

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:
 - \star computable on the lattice,
 - * having a well-defined continuum limit (renormalizable),
 - * perturbatively factorizable into PDFs.
- Examples:
 - * hadronic tensor K.-F. Liu, S.-J. Dong, 1993
 - * auxiliary scalar quark U. Aglietti et al., 1998
 - * auxiliary heavy quark W. Detmold, C.-J. D. Lin, 2005
 - * auxiliary light quark V. Braun, D. Müller, 2007
 - * quasi-distributions X. Ji, 2013
 - * "good lattice cross sections" Y.-Q. Ma, J.-W. Qiu, 2014,2017
 - * pseudo-distributions A. Radyushkin, 2017
 - * "OPE without OPE" QCDSF, 2017

Longenter the second se

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \ge 3-4$

Liseneed Twister to Colleboration

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \geq 3-4$
 - $\star \ \ \Rightarrow \infty\text{-dim}$ path integral $\rightarrow 10^8 10^9\text{-dim}$ integral

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \geq 3-4$
 - $\star \ \ \Rightarrow \infty\text{-dim}$ path integral $\rightarrow 10^8 10^9\text{-dim}$ integral
- Monte Carlo simulations to evaluate the discretized path integral

Longeneratives to a state of the state of th

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \geq 3-4$
 - $\star \Rightarrow \infty$ -dim path integral $\rightarrow 10^8 10^9$ -dim integral
- Monte Carlo simulations to evaluate the discretized path integral
- feasible, but still requires huge computational resources of $\mathcal{O}(1-1000)$ million core-hours, depending on the question asked

Lo sende Twisteer the Company of the

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \geq 3-4$
 - $\star \hspace{0.1 cm} \Rightarrow \infty \text{-dim path integral} \rightarrow 10^8 10^9 \text{-dim integral}$
- Monte Carlo simulations to evaluate the discretized path integral
- feasible, but still requires huge computational resources of $\mathcal{O}(1-1000)$ million core-hours, depending on the question asked
- formally, evaluation of a thermodynamic expectation value with respect to the Boltzmann factor $e^{-S_{\rm QCD}}$

Lo online Twister And

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \ge 3-4$
 - $\star \ \ \Rightarrow \infty\text{-dim}$ path integral $\rightarrow 10^8 10^9\text{-dim}$ integral
- Monte Carlo simulations to evaluate the discretized path integral
- feasible, but still requires huge computational resources of $\mathcal{O}(1-1000)$ million core-hours, depending on the question asked
- formally, evaluation of a thermodynamic expectation value with respect to the Boltzmann factor $e^{-S_{\rm QCD}}$
- lattice regulates IR and UV divergences; the regulator needs to be removed $\Rightarrow L \rightarrow \infty$, $a \rightarrow 0$

La constant wister the constant of the constan

- needed because of non-perturbative aspects of QCD
- allows for a quantitative *ab initio* study of QCD
- QCD d.o.f.'s put on a **Euclidean** lattice
 - $\star \quad \mathsf{quarks} \to \mathsf{sites}$
 - $\star \quad \mathsf{gluons} \to \mathsf{links}$
- various discretizations can be used for quarks and gluons
- typical lattice parameters:
 - $\star \quad L/a = 32, 48, 64, 80, 96, 128$
 - $\star \quad a \in [0.04, 0.15] \text{ fm}$
 - $\star \quad L \in [2,10] \,\, \mathrm{fm}$
 - $\star \quad m_{\pi}L \ge 3-4$
 - $\star \ \ \Rightarrow \infty\text{-dim}$ path integral $\rightarrow 10^8 10^9\text{-dim}$ integral
- Monte Carlo simulations to evaluate the discretized path integral
- feasible, but still requires huge computational resources of $\mathcal{O}(1-1000)$ million core-hours, depending on the question asked
- formally, evaluation of a thermodynamic expectation value with respect to the Boltzmann factor $e^{-S_{\rm QCD}}$
- lattice regulates IR and UV divergences; the regulator needs to be removed $\Rightarrow L \rightarrow \infty$, $a \rightarrow 0$
- prior to regulator removal (non-perturbative) renormalization

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Lattice QCD – what one should keep in mind

- Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.
- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*

Lattice QCD – what one should keep in mind

Introduction Nucleon structure Lattice QCD Quasi-distributions

Quasi-GPDs Setup

Results

Summary

- Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.
- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Lattice QCD – what one should keep in mind

• Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.

- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.
- Difficult problems need time to:
 - \star find the proper way to address
 - \star prove computational feasibility
 - * optimize the computational method
 - * acquire all data (long computations...)
 - ★ analyze all systematics

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Lattice QCD – what one should keep in mind

• Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.

- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.
- Difficult problems need time to:
 - \star find the proper way to address
 - \star prove computational feasibility
 - \star optimize the computational method
 - * acquire all data (long computations...)
 - $\star \quad \text{analyze all systematics}$
- Nucleon structure is mostly difficult... and very expensive computationally.
- Thus, do not expect miracles.

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Lattice QCD – what one should keep in mind

• Lattice QCD offers a way for a careful *ab initio* study of non-perturbative aspects of QCD.

- Its huge strength: possibility to control all systematic effects: *cut-off effects, finite volume effects, quark mass effects, isospin breaking, excited states, ...*
- For many aspects, already precision results with percent/per mille total uncertainty.
- However, many aspects (the difficult ones!) with only exploratory studies.
- Difficult problems need time to:
 - \star find the proper way to address
 - \star prove computational feasibility
 - \star optimize the computational method
 - * acquire all data (long computations...)
 - $\star \quad \text{analyze all systematics}$
- Nucleon structure is mostly difficult... and very expensive computationally.
- Thus, do not expect miracles.
- Overall, expect complementary role of lattice.
- Robust quantitative statements: *low moments, form factors*.
- *x*-dependence: breakthrough in recent years, but a long way to go to solid quantitative statements.

Lattice PDFs/GPDs: dynamical progress

Lattice PDFs/GPDs: dynamical progress

K. Cichy, Progress in x-dependent partonic distributions from lattice QCD, plenary talk LATTICE 2021, 2110.07440

- K. Cichy, Overview of lattice calculations of the x-dependence of PDFs, GPDs and TMDs, plenary talk of Virtual Tribute to Quark Confinement 2021, 2111.04552
- K. Cichy, M. Constantinou, A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results, invited review for a special issue of Adv. High Energy Phys. 2019 (2019) 3036904, 1811.07248
- M. Constantinou, The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD (would-be) plenary talk of LATTICE 2020, EPJA 57 (2021) 77, 2010.02445
- X. Ji et al., Large-Momentum Effective Theory, Rev. Mod. Phys. 93 (2021) 035005
- M. Constantinou et al., Parton distributions and LQCD calculations: toward 3D structure, PPNP 121 (2021) 103908

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs:

VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs:

VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3). AXIAL VECTOR: $\gamma_5\gamma_0, \gamma_5\gamma_3$: \tilde{H}, \tilde{E} (helicity twist-2), $\gamma_5\gamma_1, \gamma_5\gamma_2$: $\tilde{G}_1, \tilde{G}_2, \tilde{G}_3, \tilde{G}_4$ (axial vector twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs:

VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3). AXIAL VECTOR: $\gamma_5\gamma_0, \gamma_5\gamma_3$: \tilde{H}, \tilde{E} (helicity twist-2), $\gamma_5\gamma_1, \gamma_5\gamma_2$: $\tilde{G}_1, \tilde{G}_2, \tilde{G}_3, \tilde{G}_4$ (axial vector twist-3). TENSOR: $\gamma_1\gamma_3, \gamma_2\gamma_3$: $H_T, E_T, \tilde{H}_T, \tilde{E}_T$ (transversity twist-2), $\gamma_1\gamma_2$: H'_2, E'_2 (tensor twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs: VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3). AXIAL VECTOR: $\gamma_5\gamma_0, \gamma_5\gamma_3$: \tilde{H}, \tilde{E} (helicity twist-2), $\gamma_5\gamma_1, \gamma_5\gamma_2$: $\tilde{G}_1, \tilde{G}_2, \tilde{G}_3, \tilde{G}_4$ (axial vector twist-3). TENSOR: $\gamma_1\gamma_3, \gamma_2\gamma_3$: $H_T, E_T, \tilde{H}_T, \tilde{E}_T$ (transversity twist-2), $\gamma_1\gamma_2$: H'_2, E'_2 (tensor twist-3). Need different projectors to disentangle 2/4 GPDs UNPOL: $\mathcal{P} = \frac{1+\gamma_0}{4}$ $\mathcal{P}OL-k$: $\mathcal{P} = \frac{1+\gamma_0}{4}i\gamma_5\gamma_k$

Quasi-GPDs lattice procedure

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

Krzysztof Cichy

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

Krzysztof Cichy

Lattice QCD

Quasi-GP<u>Ds</u>

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

Krzysztof Cichy

Lattice QCD

Quasi-GP<u>Ds</u>

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

Krzysztof Cichy

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects

the final desired object!

Krzysztof Cichy

Lattice QCD

Quasi-GPDs

Setup

Results

Summary

Nucleon structure

Quasi-distributions

Setup

Lattice setup:

- fermions: $N_f = 2$ twisted mass fermions + clover term
- gluons: Iwasaki gauge action, $\beta = 1.778$
- gauge field configurations generated by ETMC
- lattice spacing $a \approx 0.093$ fm,
- $32^3 \times 64 \Rightarrow L \approx 3$ fm,
- $m_{\pi} \approx 260$ MeV.

Kinematics:

- three nucleon boosts: $P_3 = 0.83, 1.25, 1.67$ GeV,
- momentum transfers: $-t \leq 2.76 \text{ GeV}^2$, most data: $-t = 0.64, 0.69 \text{ GeV}^2$,
- skewness: $\xi = 0, 1/3$.

$\mathcal{O}(20000)$ measurements (≈ 250 confs, 8 source positions, 8 permutations of $\vec{\Delta}$).

Twist-2 unpolarized+helicity GPDs C. Alexandrou et al. (ETMC), PRL 125(2020)262001 Twist-2 transversity GPDs C. Alexandrou et al. (ETMC), PRD 105(2022)034501 Twist-2 unpolarized GPDs S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 106(2022)114512 Twist-2 unpolarized GPDs (OPE) S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 108(2023)014507 Twist-3 axial GPDs S. Bhattacharya et al. (ETMC/Temple), PRD 108(2023)054501 Twist-2 helicity GPDs S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 109(2024)034508 Twist-2 transversity GPDs S. Bhattacharya et al. (ETMC/BNL/ANL) in preparation Twist-2 unpolarized GPDs (pseudo-GPDs) S. Bhattacharya et al. (ETMC/Temple) in preparation

First extractions of *x*-dependent GPDs

First extractions of *x*-dependent GPDs

Krzysztof Cichy

GPDs in different frames of reference

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Introduction

Results

First extraction

Reference frames

Definitions

t-dependence

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

Definitions

Helicity

Twist-3

Summary

t-dependence

Convergence

GPDs moments

GPDs moments

First extraction Reference frames

Results

GPDs in different frames of reference

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

Definitions

Helicity

Twist-3

Summary

t-dependence

Convergence

GPDs moments

GPDs moments

First extraction Reference frames

Results

GPDs in different frames of reference

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

Asymmetric frame:

source momentum: $P_i = (E_i, \vec{P} - \vec{\Delta})$, sink momentum: $P_f = (E_f, \vec{P})$.

Definitions

Helicity

Twist-3

Summary

t-dependence

Convergence

GPDs moments

GPDs moments

First extraction Reference frames

Results

GPDs in different frames of reference

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

Asymmetric frame:

source momentum: $P_i = (E_i, \vec{P} - \vec{\Delta})$, sink momentum: $P_f = (E_f, \vec{P})$. Lattice perspective:

Several momentum transfer vectors $\vec{\Delta}$ can be obtained within a single calculation!

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z,P,\Delta) = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{m} A_1 + mz^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + im\sigma^{\mu z} A_4 + \frac{i\sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{m} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{m} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{m} A_8 \right] u(p,\lambda),$

(inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z, P, \Delta) = \bar{u}(p', \lambda') \left[\frac{P^{\mu}}{m} A_1 + m z^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + i m \sigma^{\mu z} A_4 + \frac{i \sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i \sigma^{z \Delta}}{m} A_6 + \frac{z^{\mu} i \sigma^{z \Delta}}{m} A_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_8 \right] u(p, \lambda),$ (inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Example: (γ_0 insertion, unpolarized projector) symmetric frame:

$$\Pi_0^s(\Gamma_0) = C\left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6\right),$$

asymmetric frame:

$$\Pi_{0}^{a}(\Gamma_{0}) = C \left(-\frac{(E_{f} + E_{i})(E_{f} - E_{i} - 2m)(E_{f} + m)}{8m^{3}} A_{1} - \frac{(E_{f} - E_{i} - 2m)(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{3} + \frac{(E_{i} - E_{f})P_{3}z}{4m} A_{4} + \frac{(E_{f} + E_{i})(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f} + E_{i})P_{3}(E_{f} - E_{i})z}{4m^{3}} A_{6} + \frac{E_{f}P_{3}(E_{f} - E_{i})^{2}z}{2m^{3}} A_{8} \right).$$

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z, P, \Delta) = \bar{u}(p', \lambda') \left[\frac{P^{\mu}}{m} A_1 + m z^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + i m \sigma^{\mu z} A_4 + \frac{i \sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i \sigma^{z \Delta}}{m} A_6 + \frac{z^{\mu} i \sigma^{z \Delta}}{m} A_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_8 \right] u(p, \lambda),$ (inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Example: (γ_0 insertion, unpolarized projector) symmetric frame:

$$\Pi_0^s(\Gamma_0) = C\left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6\right),$$

asymmetric frame:

$$\Pi_{0}^{a}(\Gamma_{0}) = C \left(-\frac{(E_{f} + E_{i})(E_{f} - E_{i} - 2m)(E_{f} + m)}{8m^{3}} A_{1} - \frac{(E_{f} - E_{i} - 2m)(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{3} + \frac{(E_{i} - E_{f})P_{3}z}{4m} A_{4} + \frac{(E_{f} + E_{i})(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f} + E_{i})P_{3}(E_{f} - E_{i})z}{4m^{3}} A_{6} + \frac{E_{f}P_{3}(E_{f} - E_{i})^{2}z}{2m^{3}} A_{8} \right).$$

- matrix elements $\Pi_{\mu}(\Gamma_{\nu})$ are **frame-dependent**,
- but the amplitudes A_i are frame-invariant.

Krzysztof Cichy

Proof of concept (comparison between frames)

 A_1 , A_5 (leading ones) A_2 , A_3 , A_4 , A_6 , A_7 , A_8 (suppressed ones) A_1 nonsym — A_2 nonsym 1.4 1.4 A₁ sym — A_2 sym — 1.2 A₅ nonsym ⊢⊸ 1.2 A_3 nonsym A_5 sym \mapsto A_3 sym --1 1 A_4 nonsym A_4 sym \vdash 0.8 0.8 A_6 nonsym \rightarrow Re A_i Re A_i A_6 sym — 0.6 0.6 Re A_7 nonsym A₇ sym 0.4 0.4 A_8 nonsym 0.2 0.2 A₈ sym 0 0 -0.2 -0.2 15 -5 -15 -10 -5 0 5 10 -15 -10 0 5 10 15 ^{z/a}S. Bhattacharya et al., PRD106(2022)114512 z/a 0.6 0.6 0.4 0.4 0.2 0.2 ${\rm Im} \, A_{\rm i}$ $\operatorname{Im} A_{i}$ 0 Im -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 15 -15 10 10 15 -10 -5 5 -15 -10 -5 5 0 0 z/a z/a

Krzysztof Cichy

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $r(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $r(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

ASYMMETRIC frame:

$$F_{H^{(0)}} = A_1 + \frac{\Delta_0}{P_0} A_3 + \frac{m^2 z \Delta_0}{2P_0 P_3} A_4 + \frac{z(\Delta_0^2 + \Delta_\perp^2)}{2P_3} A_6 + \frac{z(\Delta_0^3 + \Delta_0 \Delta_\perp^2)}{2P_0 P_3} A_8 ,$$

$$F_{E}(0) = -A_{1} - \frac{\Delta_{0}}{P_{0}}A_{3} - \frac{m^{2}z(\Delta_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} - \frac{z\left(\Delta_{0}^{2} + 2P_{0}\Delta_{0} + 4P_{0}^{2} + \Delta_{\perp}^{2}\right)}{2P_{3}}A_{6} - \frac{z\Delta_{0}\left(\Delta_{0}^{2} + 2\Delta_{0}P_{0} + 4P_{0}^{2} + \Delta_{\perp}^{2}\right)}{2P_{0}P_{3}}A_{8}$$

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $z(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

ASYMMETRIC frame:

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{\Delta_0}{P_0} A_3 + \frac{m^2 z \Delta_0}{2P_0 P_3} A_4 + \frac{z (\Delta_0^2 + \Delta_\perp^2)}{2P_3} A_6 + \frac{z (\Delta_0^3 + \Delta_0 \Delta_\perp^2)}{2P_0 P_3} A_8 \,, \\ F_{E^{(0)}} &= -A_1 - \frac{\Delta_0}{P_0} A_3 - \frac{m^2 z (\Delta_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 - \frac{z \left(\Delta_0^2 + 2P_0 \Delta_0 + 4P_0^2 + \Delta_\perp^2\right)}{2P_3} A_6 - \frac{z \Delta_0 \left(\Delta_0^2 + 2\Delta_0 P_0 + 4P_0^2 + \Delta_\perp^2\right)}{2P_0 P_3} A_8 \,. \end{split}$$

One can also modify the definition to make it Lorentz-invariant and arrive at: ANY frame: $F_{H} = A_{1}$

$$F_H = A_1 ,$$

 $F_E = -A_1 + 2A_5 + 2zP_3A_6 .$

With respect to the standard definition, removed/reduced contribution from A_3 , A_4 , A_6 , A_8 . In terms of matrix elements: standard definition – only $\Pi_0(\Gamma_0)$, $\Pi_0(\Gamma_{1/2})$, LI definition – additionally: $\Pi_{1/2}(\Gamma_3)$ (both frames), $\Pi_{1/2}(\Gamma_3)$, $\Pi_{1/2}(\Gamma_0)$, $\Pi_1(\Gamma_2)$, $\Pi_2(\Gamma_1)$ (asym.).

H and E GPDs – comparison of definitions

STANDARD DEFINITION

S. Bhattacharya et al., PRD106(2022)114512

LORENTZ-INVARIANT DEFINITION

S. Bhattacharya et al., PRD106(2022)114512

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 16 / 30

t-dependence of H/E GPDs

All kinematic cases (asymmetric frame):

- $\Delta = (1,0,0) \Rightarrow -t = 0.17 \text{ GeV}^2$,
 - $\Delta = (1, 1, 0) \Rightarrow -t = 0.33 \text{ GeV}^2$,
- $\Delta = (2, 0, 0) \Rightarrow -t = 0.64 \text{ GeV}^2$,
- $\Delta = (2, 1, 0) \Rightarrow -t = 0.79 \text{ GeV}^2$,
- $\Delta = (2, 2, 0) \Rightarrow -t = 1.22 \text{ GeV}^2$,
- $\Delta = (3,0,0) \Rightarrow -t = 1.36 \text{ GeV}^2$,
- $\Delta = (3, 1, 0) \Rightarrow -t = 1.49 \text{ GeV}^2$,
- $\Delta = (4,0,0) \Rightarrow -t = 2.24 \text{ GeV}^2$,

Introduction

- Results
- First extraction
- Reference frames
- Definitions
- t-dependence
- Helicity Convergence
- Twist-3
- GPDs moments
- ${\sf GPDs} \ {\sf moments}$
- Summary

Introduction

Definitions

Helicity

Twist-3

Summary

t-dependence

Convergence

GPDs moments

GPDs moments

First extraction

Reference frames

Results

t-dependence of H/E GPDs

All kinematic cases (asymmetric frame):

- $\Delta = (1,0,0) \Rightarrow -t = 0.17 \text{ GeV}^2$,
- $\Delta = (1, 1, 0) \Rightarrow -t = 0.33 \text{ GeV}^2$,
- $\Delta = (2,0,0) \Rightarrow -t = 0.64 \text{ GeV}^2$,
- $\Delta = (2, 1, 0) \Rightarrow -t = 0.79 \text{ GeV}^2$,
- $\Delta = (2, 2, 0) \Rightarrow -t = 1.22 \text{ GeV}^2$,
- $\Delta = (3,0,0) \Rightarrow -t = 1.36 \text{ GeV}^2$,
- $\Delta = (3, 1, 0) \Rightarrow -t = 1.49 \text{ GeV}^2$,
- $\Delta = (4,0,0) \Rightarrow -t = 2.24 \text{ GeV}^2$,

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 17 / 30

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \bigg[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \bigg) + m \not z\gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \bigg) \bigg] u(p,\lambda)$$

S. Bhattacharya et al., PRD109(2024)034508

S. Bhattacharya et al., PRD109(2024)034508

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m\not z\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \bigg[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \bigg) + m \not z\gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \bigg) \bigg] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Both Lorentz-invariant!

S. Bhattacharya et al., PRD109(2024)034508

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m \not z\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Both Lorentz-invariant!

S. Bhattacharya et al., PRD109(2024)034508

 \widetilde{E} seems impossible to extract at zero skewness: $F_{\widetilde{E}} = 2 \, \frac{P \cdot z}{\Delta \cdot z} A_3 + 2A_5$.

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m \notz\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$. Both L

Both Lorentz-invariant!

S. Bhattacharya et al., PRD109(2024)034508

 \widetilde{E} seems impossible to extract at zero skewness: $F_{\widetilde{E}} = 2 \frac{P \cdot z}{\Delta \cdot z} A_3 + 2A_5$.

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

Convergence of alternative definitions of $\tilde{H}/H/E$

Convergence of alternative definitions of $\tilde{H}/H/E$

HELICITY

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 20 / 30

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs: g_T , h_L , e
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, Phys. Rev. D105 (2022) 054027

Note: neglected qgq correlations

see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Twist-3: $m_{\pi} = 260 \text{ MeV}$ a = 0.093 fmQUASI TMF no density interpretation, contain important information about qgq correlations, appear in QCD factorization theorems for a variety of hard scattering processes, have interesting connections with TMDs, important for JLab's 12 GeV program + for EIC, however, measurements very difficult. Exploratory studies: matching for twist-3 PDFs: q_T , h_L , e S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005 S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025 BC-type sum rules S. Bhattacharya, A. Metz, Phys. Rev. D105 (2022) 054026 Note: neglected qgq correlations see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087 lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$ + test of Wandzura-Wilczek approximation S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R) S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Twist-3: $m_{\pi} = 260 \text{ MeV}$ a = 0.093 fmQUASI TMF no density interpretation, contain important information about qgq correlations, appear in QCD factorization theorems for a variety of hard scattering processes, have interesting connections with TMDs, important for JLab's 12 GeV program + for EIC, however, measurements very difficult. Exploratory studies: matching for twist-3 PDFs: q_T , h_L , eS. Bhattacharya et al., Phys. Rev. D102 (2020) 034005 S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025 BC-type sum rules S. Bhattacharya, A. Metz, Phys. Rev. D105 (2022) 05402 Note: neglected qgq correlations see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087 lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$ + test of Wandzura-Wilczek approximation S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R) S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 21 / 30

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

Twist-3: $m_{\pi} = 260 \text{ MeV}$ a = 0.093 fmQUASI TMF no density interpretation, contain important information about qgq correlations, appear in QCD factorization theorems for a variety of hard scattering processes, have interesting connections with TMDs, important for JLab's 12 GeV program + for EIC, however, measurements very difficult. Exploratory studies: -1 matching for twist-3 PDFs: q_T , h_L , eS. Bhattacharya et al., Phys. Rev. D102 (2020) 034005 S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025 BC-type sum rules S. Bhattacharya, A. Metz, Phys. Rev. D105 (2022) 05402 Note: neglected qgq correlations 3 see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087 lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$ + test of Wandzura-Wilczek approximation S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R) S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510 first exploration of twist-3 GPDs S. Bhattacharya et al., 2306.05533

Twist-3 axial GPDs

Very recently, we combined our explorations of GPDs and of twist-3 distributions S. Bhattacharya et al., PRD108(2023)054501

Twist-3 axial GPDs: $\widetilde{G}_1, \, \widetilde{G}_2, \, \widetilde{G}_3, \, \widetilde{G}_4$

$$\mathcal{F}^{[\gamma_j\gamma_5]} = -i\frac{\Delta_j\gamma_5}{2m} F_{\widetilde{E}+\widetilde{G}_1} + \gamma_j\gamma_5 F_{\widetilde{H}+\widetilde{G}_2} + \frac{\Delta_j\gamma_3\gamma_5}{P_3} F_{\widetilde{G}_3} - \frac{\operatorname{sign}[P_3]\varepsilon_{\perp}^{j\,\rho}\Delta_{\rho}\gamma_3}{P_3} F_{\widetilde{G}_4}$$

Contributions from different insertions and projectors $(\vec{\Delta} = (\Delta_1, 0, 0))$:

 $\begin{array}{l} \Pi(\gamma^2\gamma^5,\Gamma_0): \ \widetilde{H}+\widetilde{G}_2 \ \text{and} \ \widetilde{G}_4, \\ \Pi(\gamma^2\gamma^5,\Gamma_2): \ \widetilde{H}+\widetilde{G}_2 \ \text{and} \ \widetilde{G}_4, \\ \Pi(\gamma^1\gamma^5,\Gamma_1): \ \widetilde{H}+\widetilde{G}_2 \ \text{and} \ \widetilde{E}+\widetilde{G}_1, \\ \Pi(\gamma^1\gamma^5,\Gamma_3): \ \widetilde{G}_3. \end{array}$

Twist-3 GPDs in coordinate space

 \widetilde{G}_4

PRD108(2023)054501

S. Bhattacharya et al.

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 23 / 30

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 24 / 30

Krzysztof Cichy

,

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 25 / 30

 $G_P(t) = \int_{-1}^1 dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_1(x,\xi,t) \right) = \int_{-1}^1 dx \, \widetilde{E}(x,\xi,t)$ $G_A(t) = \int_{-1}^1 dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_2(x,\xi,t) \right) = \int_{-1}^1 dx \, \widetilde{H}(x,\xi,t)$

$$\Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0$$

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) \\ G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$	$P_3 = 1.67 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$
	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 1.38 \; [\mathrm{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of \widetilde{G}_2 and \widetilde{G}_4 close to vanishing.

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t)$ $G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t)$ $\Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 [\text{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$	$P_3 = 1.67 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$
	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 1.38 \; [\mathrm{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of \tilde{G}_2 and \tilde{G}_4 close to vanishing.

Efremov-Leader-Teryaev-type sum rules:

$$\int dx \, x \, \widetilde{G}_3(x,\xi,t) = \frac{\xi}{4} G_E(t) \,, \qquad \int_{-1}^1 dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E(t) \,.$$

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) \\ G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 [\text{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.67 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$
	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 0.69 \; [\mathrm{GeV}^2]$	$-t = 1.38 \; [\mathrm{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of \widetilde{G}_2 and \widetilde{G}_4 close to vanishing.

Efremov-Leader-Teryaev-type sum rules:

$$\int dx \, x \, \widetilde{G}_3(x,\xi,t) = \frac{\xi}{4} G_E(t) \,, \qquad \int_{-1}^1 dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E(t) \,.$$

- $\widetilde{\widetilde{G}}_3$ indeed vanishes at $\xi = 0$,
- \tilde{G}_4 non-vanishing and small.

,

Short-distance factorization of ratio-renormalized H/E:

$$\mathcal{F}^{\overline{\mathrm{MS}}}(z, P, \Delta) = \sum_{n=0} \frac{(-izP)^n}{n!} C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2) \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

 $C_n^{\overline{\text{MS}}}(\mu^2 z^2)$ – Wilson coefficients (NNLO for u - d, NLO for u + d)

S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 108(2023)014507

GPDs moments from OPE of non-local operators

Moments of impact parameter parton distributions in the transverse plane:

$$\rho_{n+1}(\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} A_{n+1,0}(-\vec{\Delta}_{\perp}^2) e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}},$$

$$\rho_{n+1}^T(\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} [A_{n+1,0}(-\vec{\Delta}_{\perp}^2) + i \frac{\Delta_y}{2M} B_{n+1,0}(-\vec{\Delta}_{\perp}^2)] e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}}.$$

S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 108(2023)014507

Introduction

Results

Summary

- Main message: probing nucleon's 3D structure with LQCD becomes feasible!
- Recent breakthrough for GPDs: computationally more efficient calculations in non-symmetric frames.
- Also, new definitions of GPDs with different convergence properties e.g. faster convergence for the unpolarized GPD *E*.
- A lot of follow-up work in progress: transversity GPDs, pion and kaon GPDs, other twist-3 GPDs, extension of kinematics.
- Obviously, GPDs much more challenging than PDFs.
- Several challenges have to be overcome control of lattice and other systematics.
- Consistent progress will ensure complementary role to pheno!

Introduction

Results

Summary

- Main message: probing nucleon's 3D structure with LQCD becomes feasible!
- Recent breakthrough for GPDs: computationally more efficient calculations in non-symmetric frames.
- Also, new definitions of GPDs with different convergence properties e.g. faster convergence for the unpolarized GPD *E*.
- A lot of follow-up work in progress: transversity GPDs, pion and kaon GPDs, other twist-3 GPDs, extension of kinematics.
- Obviously, GPDs much more challenging than PDFs.
- Several challenges have to be overcome control of lattice and other systematics.
- Consistent progress will ensure complementary role to pheno!

Thank you for your attention!

Introduction

Results

Summary

Backup slides

Bare ME

Renorm ME

 ${\sf Matched}\ {\sf GPDs}$

Transversity

Comparison

Backup slides

Lattice matrix elements need to be computed with 2 different projections (unpolarized/polarized). Below for the unpolarized Dirac insertion (for unpolarized GPDs)

Removal of divergences and disentangling of H- and E-GPDs. Unpolarized Dirac insertion (for unpolarized GPDs)

Reconstruction of x-dependence and matching to light cone. Unpolarized Dirac insertion (for unpolarized GPDs)

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 35 / 30

Transversity GPDs: ETMC, Phys. Rev. D105 (2022) 034501 4 GPDs: H_T , E_T , \tilde{H}_T , \tilde{E}_T

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 36 / 30

ahora

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 37 / 30

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 38 / 30

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 39 / 30

ETMC, Phys. Rev. D105 (2022) 034501

More fundamental quantity: $E_T + 2\tilde{H}_T$

- related to the transverse spin structure of the proton
- physically interpreted as lateral deformation in the distribution of transversely polarized quarks in an unpolarized proton
- lowest Mellin moment in the forward limit: transverse spin-flavor dipole moment in an unpolarized target (k_T)
- second moment related to the transverse-spin quark angular momentum in an unpolarized proton

Comparison of different types of PDFs/GPDs

ETMC, Phys. Rev. Lett. 125 (2020) 262001 ETMC, Phys. Rev. D105 (2022) 034501

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 41 / 30

Moments of transversity GPDs

n = 0 Mellin moments:

$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t),$$

$$\int_{-1}^{1} dx \, E_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_{3}) = B_{T10}(t),$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t),$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0,$$
(1)

- lowest moments of GPDs skewness-independent,
- lowest moments of quasi-GPDs boost-independent.

n = 1 Mellin moments (related to GFF of one-derivative tensor operator):

$$\int_{-1}^{1} dx \, x \, H_{T}(x,\xi,t) = A_{T20}(t) ,$$

$$\int_{-1}^{1} dx \, x \, E_{T}(x,\xi,t) = B_{T20}(t) ,$$

$$\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x,\xi,t) = \widetilde{A}_{T20}(t) , \qquad (3)$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) , \qquad (2)$$

• skewness-dependence only in for \widetilde{E}_T (only ξ -odd GPD).

Krzysztof Cichy

Introduction

Summary

Results

Backup slides

Bare ME

Renorm ME

Matched GPDs

Transversity

Comparison

Moments of transversity GPDs

Moments of	$H_T(x,\xi=0,t=-0.69{ m GeV}^2)$			$H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 \text{ GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
H_{Tq}	0.65(4)	0.64(6)	0.81(10)	0.49(5)
H_T	0.69(4)	0.67(6)	0.84(10)	0.45(4)
xH_T	0.20(2)	0.21(2)	0.24(3)	0.15(2)
$A_{T10} (z = 0)$	0.65(4)	0.65(6)	0.82(10)	0.49(5)

Mellin moments P_3 -independent, preserved by matching, suppressed with increasing -t.

Moments of	$E_T(x,\xi=0,t=-0.69{ m GeV}^2)$			$H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 \text{ GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
E_{Tq}		1.20(42)	2.05(65)	0.67(19)
E_T		1.15(43)	2.10(67)	0.73(19)
xE_T		0.06(4)	0.13(5)	0.11(11)
$B_{T10} \ (z=0)$	1.71(28)	1.22(43)	2.10(67)	0.68(19)
Moments of	$\widetilde{H}_T(x,\xi=0,t=-0.69\mathrm{GeV}^2)$			$\widetilde{H}_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 \text{ GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
\widetilde{H}_{Tq}		-0.44(20)	-0.90(32)	-0.26(9)
\widetilde{H}_T		-0.42(21)	-0.92(33)	-0.27(9)
$x\widetilde{H}_T$		-0.17(8)	-0.30(10)	-0.05(5)
$\widetilde{A}_{T10} \ (z=0)$	-0.67(14)	-0.45(21)	-0.92(33)	-0.24(8)

Similar conclusions (but very large errors).

Bare matrix elements of $\Pi_0(\Gamma_0)$

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 44 / 30

Example amplitude A_1

symmetric frame

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 45 / 30

Example amplitude A_5

symmetric frame

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 46 / 30

Example amplitude A_6

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 47 / 30

H and E GPDs – signal improvement

standard

Lorentz-invariant

Krzysztof Cichy

3D nucleon structure from Lattice QCD – Seminar Warsaw Apr 2024 – 48 / 30

Quasi- and matched H and E GPDs

