Nuclear Collective Excitations and Realistic Models
 $$
\mathscr{L}_{0} \text { in Sharpey- }{ }_{c} \text { chafer et af. }
$$

Dr. Rob Bark
iThemba LABS

Dr. Suzan Bvumbi NRWDI, Pelendaba

Dr. Tshepo Dinoko NMISA, Pretoria

Dr. Siyabonga Majola Uni. Johannesberg

Review Article; EPJA55 (2019) 15
"Stiff" Deformed Nuclei, Configuration Dependent Pairing and the β and γ Degrees of Freedom.

Examples of collective Classical time-dependent Vibrations

 of the Mean-field
$\lambda=2, \mathbf{a}_{\mathbf{2}, \mathbf{0}}$
Quadrupole β vibration

$\lambda=2, \mathbf{a}_{\mathbf{2 , 2}}$
Quadrupole γ vibration

$\lambda=3, \mathbf{a}_{\mathbf{3}, \mathbf{0}}$ Octupole vibration
web-docs.gsi.de/~wolle/TELEKOLLEG/KERN/index-s.html

Fowever!! Simple pictures can be Misleading

the Heisenberg Uncertainty Principle tells us that the Nucleon-Nucleon Interaction is not Strong Enough to Localise the Nucleons

You can only Measure $<\boldsymbol{R}^{2}>$ for instance with electron scattering (e,e)

Assume axially symmetric ($\mathrm{m}=0$) Shape CLASSICALLY
Expand shape in Legendre Polynomials

$\mathbf{R}(\mathrm{r}, \vartheta)=\mathrm{R}\left\{1+\mathrm{a}_{2} \mathrm{P}(\cos \vartheta)+\mathrm{a}_{3} \mathrm{P}_{3}(\cos \vartheta) \ldots\right\}=\mathrm{R}\left\{1+\sum \mathrm{a}_{\lambda} \mathrm{P}_{\lambda}(\cos \vartheta)\right\}$
Consider the Dimensions supposing that $\omega^{2} \propto \gamma^{x} \rho^{y} R^{z}$
$\omega^{2}=$ frequency 2 of vibration with dimensions $[\mathrm{T}]^{-2}$
$\gamma=$ surface energy/unit area with dimensions $[\mathrm{M}][\mathrm{L}]^{2}[\mathrm{~T}]^{-2}[\mathrm{~L}]^{-2}$
$\rho=$ density with dimensions
$[\mathrm{M}][\mathrm{L}]^{-3}$
$\mathrm{R}=$ radius with dimensions
Therefore $\quad[\mathrm{T}]^{-2}=[\mathrm{M}]^{\mathrm{x}}[\mathrm{T}]^{-2 \mathrm{x}}[\mathrm{M}]^{\mathrm{y}}[\mathrm{L}]^{-3 \mathrm{y}}[\mathrm{L}]^{\mathrm{z}}$
So that $\quad-2=-2 x \quad$ ie. $\quad x=1 \quad]$

$$
\left.\begin{array}{lll}
0=x+y & \text { ie. } & y=-1 \\
0=-3 y+z & \text { ie. } & z=-3
\end{array}\right\} \quad \omega^{2} \propto \gamma / \rho R^{3}
$$

Classical Vibrations of a Liquid Drop

By considering a superfluid incompressible liquid sphere
Lord Rayleigh (John William Strutt) Proc. Roy. Soc. 29,71 (1879) Appendix II Equ. 40, got:

$$
\omega^{2}=\frac{(\lambda-1) \lambda(\lambda+2) \gamma}{\rho R^{3}}
$$

$$
\begin{aligned}
& \text { Also See: } \\
& \text { S Flügge, Ann Phys Lpz } 431 \\
& \text { (1941) } 373 \\
& \hline
\end{aligned}
$$

For a charged spherical nucleus this becomes : www.eng.fsu.edu/~dommelen/quantum/style a/nt liqdrop.html

$$
\omega^{2}=\frac{(\lambda-1) \lambda(\lambda+2)}{3} \frac{C_{S}}{R_{A}^{2} m A}-\frac{2(\lambda-1) \lambda}{(2 \lambda+1)} \frac{e^{2} Z^{2}}{4 \pi \epsilon_{0} R_{A}^{3} m_{p} A^{2}}
$$

Where C_{s} is the SURFACE term in the Weizsäcker Binding Energy formula

$$
E_{b}=C_{V}-C_{S} A^{2 / 3}-C_{C} Z^{2} A^{-1 / 3}-C_{A}(N-Z)^{2} A^{-1} \pm \delta
$$

and the second term has little effect for $\mathrm{Z}<80$.

Quantization of the Vibrations of a Liquid Drop

Quantize Using $\quad E_{x}=\hbar \omega$ and

$$
\omega^{2}=(\lambda-1) \lambda(\lambda+2) C_{s} / 3 R_{A}^{2} m A
$$

Where $C_{S} \sim 18 \mathrm{MeV}$ and $R_{A}=1.3 \mathrm{fm}$

The Thassical $\mathscr{S}_{\text {esuft is that }}$ Vibrations are WELL above the Pairing Gap

Pairing Energy $\Delta \approx 12 / \mathrm{A}^{1 / 2} \mathrm{MeV}$ From Bohr and Mottelson

Other Factors Affecting Vibrations

Fig. 1. Comparison of the different models for moment of inertia with experimental data.
P Tamagno \& O Litaize, EPJ Web of Conf., 193,01004 (2018)
Inglis-Belyaev Cranking code CONRAD
2. Shell Corrections
will put vibrational energy UP

Figure 17. Single-particle level energies calculated for an axially symmetrictharmonic oscillator (from reference 18)
$E \uparrow$ estrutijuslei

The Bohr and Mottelson Approach

4th June 2020

Figure 3. Ground-state, and $\beta-\gamma$-, and octupole-vibrational bands $-\mathrm{in}{ }^{152} \mathrm{Sm}$.

The β and γ Quadrupole Degrees of Freedom

$$
\begin{gathered}
E_{S H O}=(\mathrm{n}+1 / 2) \hbar \omega \\
\text { Bohr \& Mottelson }
\end{gathered}
$$

$$
\begin{gathered}
E_{S q W} \propto \mathbf{n}^{2} \\
\text { Iachello } \mathbf{X}(5)
\end{gathered}
$$

UNEXPECTED STRONG PAIR CORRELATIONS IN EXCITED 0^{+}STATES OF ACTINIDE NUCLEI*
J. V. Maher, J. R. Erskine, A. M. Friedman, J. P. Schiffer, \dagger and R. H. Siemssen Argonne National Laboratory, Argonne, Illinois 60439

$$
\text { (Received } 1 \text { June 1970) }
$$

The (p, t) reaction has been studied with $17-\mathrm{MeV}$ protons on targets of $\mathrm{Th}^{230}, \mathrm{U}^{234,236,238}$ and $\mathrm{Pu}^{242}, 244$. The results indicate unexpectedly strong $l=0$ transitions to states at about $900-\mathrm{keV}$ excitation. Their cross sections are approximately 15% of the ground-state ransitions; this percentage does not change appreciably with neutron number. This result, together with other available evidence, seems to suggest a simple and rather stable collective mode which has not yet emerged from any theoretical calculations

J V Maher et al.

PRL 25 (1970) 302

Volume 25, Number 5
PHYSICAL REVIEW LETTERS
3 August 1970

${ }^{238} \mathrm{U}(\mathrm{p}, \mathbf{t})^{236} \mathrm{U}$ 17 MeV $\theta=30^{\circ}$

 carbon foil. The peaks are labeled by the excitation energies (keV) and spins of the corresponding states in U^{236}.

Two Neutron Transfer to ${ }^{154} \mathbf{G d}(N=90)$

HENCE Monopole Pairing is NOT Sufficient

> Similar Structures Built on the Ground state O_{1}^{+}and Second
> Vacuum O_{2}^{+}state in ${ }^{154} \mathrm{Gd}$ and ${ }^{152} \mathrm{Sm}$

What is the $\mathbf{0}_{\mathbf{2}}{ }^{+}>$Configuration?

(c) $(t, p) \&(p, t) \Longrightarrow\left|0_{2}{ }^{+}\right\rangle$is $2 p_{n}-2 h_{n}$
this gives J^{π} but nothing on the orbit.
\& Single particle transfer would give l_{n} but does not populate $\mid \mathbf{0}_{2}{ }^{+}$.
\square
In $\left\{\left|0_{2}^{+}\right\rangle+\right.$neutron $\}$, look to see which orbit does NOT couple to $\left|0_{2}{ }^{+}\right\rangle$。

Configuration Dependent Pairing

R. E. Griffin, A. D. Jackson and A. B. Volkov, Phys. Lett. 36B, 281 (1971).

Suggested that $\Delta_{p p} \approx \Delta_{o o} \gg \Delta_{o p}$
for Actinide Nuclei where $\mathrm{O}_{2}+$ states were observed in (p, t) that were not pairing- or β-vibrations.
Suppose there are n prolate and n oblate degenerate levels at the Fermi Surface;
Assume that each pairing matrix element is the same for the same type $-a$
BUT the prolate-oblate matrix elements are very weak - εa
Then if the prolate $n^{*} n$ matrix is A, the oblate matrix is also A
The matrix for the total system is;

$$
\left[\begin{array}{ll}
A & \varepsilon A \\
\varepsilon A & A
\end{array}\right]
$$

Then there are ($2 n-2$) states with ZERO energy and 2 states with energie $(2 n-2)$

$$
E_{1,2}=-(1 \pm \varepsilon) n a
$$

I. Ragnarsson and R. A. Broglia, Nucl. Phys. A263, 315 (1976). coined the term "pairing isomers" for these $\mathrm{O}_{2}{ }^{+}$states
\square

FIG. 1. Typical spectrum for the ${ }^{158} \mathrm{Dy}(p, t){ }^{156} \mathrm{Dy}$ reaction at $E_{p}=29.9 \mathrm{MeV}$ and $\theta_{\text {1ab }}=10^{\circ}$. This is a com-

$$
-\mathscr{F}_{\text {parizing }}=G_{p-p} \dot{P}_{p}^{\dagger} \dot{P}_{p}+G_{o-o} \dot{P}_{o}^{\dagger} \dot{P}_{o}+\dot{\varepsilon}_{p-p} \dot{P}_{p o}^{\dagger} \dot{P}_{p o}
$$

HOW TO MEASURE THE PAIRING ??

Coriolis term in the Hamiltonian $=-j_{x} \omega$

$\mathrm{i}_{13 / 2}$ neutron AB alignments from $\mathrm{N}=88$ to 98 and
$\mathrm{Z}=62$ to 72
See:
Jerry Garrett et al.
PL B118 (1982) 297

Cranked Shell Model
Routhians \boldsymbol{e},

Excitation Energies of $0_{2}{ }^{+}$band-heads and $v[505] 11 / 2^{-}$isomers

Excitation Energies of $K=2^{+} \gamma$ band-heads

Quantum Number $K=I_{z}$ the spin projection on the $\gamma=0^{\circ}$ symmetry axis

Tracking of γ band through $i_{13 / 2}$ neutron $A B$ alignment and $h_{11 / 2}$ proton alignment ab

Ollier et al. PR C83 (2011) 044309

Trope in Sh Kef Models??

 DATA FROMMajola et al. PRC91 (2015) 034330

TPSM Successes

1. Predicts γ and $\gamma \gamma$ bands
2. Predicts S_{n}-band and $S_{n}+S_{p}$-band
3. Predicts observed γ band built on $S_{n^{-}}$ band
4. Predicts an S_{n}-band built on $0_{2}{ }^{+}$
5. Can show components of Wavefunctions

TPSM Failures

1. Pairing too crude, No Neutron Pairing Isomer $0_{2}{ }^{+}$too high in Energy
2. Signature Splitting not spot on

The Bohr Hamiltonian
Uses a 5-D Space ($\theta, \varphi, \psi, \beta, \gamma$) to Characterize a Macroscopic Nuclear Drop Rotating and Vibrating in Space
Quantization is achieved by the usual Pauli p

$$
E(\alpha, \dot{\alpha})=\frac{1}{2} C \alpha^{2}+\frac{1}{2} D \dot{\alpha}^{2}
$$

$$
\text { momentum } \pi=\frac{\partial}{\partial \dot{\alpha}}(T-V)=D \dot{\dot{\alpha}}
$$

$$
H=\frac{1}{2} D^{-1} \pi^{2}+\frac{1}{2} C \alpha^{2}
$$

$$
E(n)=\left(n+\frac{1}{2}\right) \hbar \omega \quad \omega=\left(\frac{C}{D}\right)^{1 / 2}
$$

$$
\text { quantization }[\pi, \alpha]=-i \hbar
$$

$$
\hat{H}=\hat{T}_{\mathrm{vib}}+\hat{T}_{\mathrm{rot}}+V_{\mathrm{coll}}
$$

with the vibrational kinetic energy:

$$
\begin{aligned}
\hat{T}_{\text {vib }}= & -\frac{\hbar^{2}}{2 \sqrt{w r}}\left\{\frac { 1 } { \beta ^ { 4 } } \left[\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{4} B_{\gamma \gamma} \frac{\partial}{\partial \beta}\right.\right. \\
& \left.-\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{3} B_{\beta \gamma} \frac{\partial}{\partial \gamma}\right] \\
& +\frac{1}{\beta \sin 3 \gamma}\left[-\frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \gamma} \frac{\partial}{\partial \beta}\right. \\
& \left.\left.+\frac{1}{\beta} \frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \beta} \frac{\partial}{\partial \gamma}\right]\right\}
\end{aligned}
$$

and rotational kinetic energy:

$$
\hat{T}_{\mathrm{rot}}=\frac{1}{2} \sum_{k=1}^{3} \frac{\hat{\boldsymbol{J}}_{k}^{2}}{\mathcal{I}_{k}} .
$$

Majola et al., PRC100, 044324 (2019) + Zhi Shi, Zhipan Li, Shuangquan Zhang et al. South Africa (Experiments) - China (5-DCH+CDFT)

4th June 2020

Signature Splitting

$$
S(I)=\frac{\{[E(I)-E(I-1)]-[E(I-1)-(E(I-2)]\}}{E\left(2_{1}^{+}\right)}
$$

Due to BAND MIXING !!

29

Advanced Monte Car-Io Shell Model TAKAHARU OTSUKA

 NuSpin2018 Valencia

Otsuka et al., PRL123, 222502 (2019)
"Type II shell evolution is a simplest and visible case of "QU\&NTUM SELF ORG KIZ TION"

Atomic nuclei can "organize" their single-particle energies by taking particular configurations of protons and neutrons optimized for each eigenstate, thanks to orbit-dependences of monopole components of nuclear forces (e.g., tensor force).
\rightarrow an enhancement of Jahn-Teller effect.
Nilsson-type effects can be enhanced by this optimization.

$$
\begin{aligned}
& \text { Effective Single-Particle } \\
& \text { Energies (ESPE) } \\
& 0^{+}{ }_{1} \text { prolate } \\
& 0^{+}{ }_{2} \text { triaxial } \\
& -8,00 \\
& { }_{\text {.10.00 }}-\mathrm{Oh}_{11 / 2} \\
& \text { ESPEs show very } \\
& \text { different patterns } \\
& { }_{-12.00} \quad \mathrm{O}^{+} \mathrm{Cl}^{+} \mathrm{O}_{2} \\
& \text { between eigenstates }
\end{aligned}
$$

Otsuka et al., PRL123, 222502 (2019)

Summary

Nuclear forces are rich enough to optimize single-particle energies for each eigenstate (especially in the cases of collective-mode states), as referred to as quantum self-organization. It produces sizable effects with
(i) two quantum fluids (protons and neutrons),
(ii) two major forces : e.g., quadrupole interaction to drive collective mode monopole interaction to control resistance

This feature fits well the general concept of the self organization. "The $\mathbf{0}^{+}{ }_{2}$ and $\mathbf{2}^{+}{ }_{2,3}$ may not be members of β or γ vibration, but are triaxially deformed states with stronger fluctuation."

Effective Single Particle Energies show different patterns to produce such shapes.

LASTLY

What, $\mathfrak{N O}$ Tibrations ??
or Ghononsor Gosons??!!

