"Jak pomiar korelacji kątowych w EAGLE wpłynął na wyniki badań jądra ¹⁴⁰Sm widziane w REX-ISOLDE" Justyna Samorajczyk-Pyśk

Seminarium Fizyki Jądra Atomowego 12.04.2018

 $^{140}_{62}\text{Sm}_{78}$

50<Z<82 50<N<82

$B(E2; 0_2^+ \rightarrow 2_1^+) = 1.02(15)e^2b^2$

Aparatura

- Cyklotron U200P \rightarrow od α do ⁴⁰Ar
- Spektrometr EAGLE

- Dwa rodzaje korelacji kątowych γ-γ
 –Korelacje kątowe z jąder o spinach niezorientowanych
 - –Korelacje kątowe z jąder o spinach zorientowanych (DCO – Directional Correlation from Oriented Nuclei)

Korelacje z jąder o spinach niezorientowanych

 A_{22} i A_{44} jest funkcją spinów *I*, multipolowości *L* i współczynników zmieszania δ .

 A_{22} i A_{44} jest funkcją spinów *I*, multipolowości *L* i współczynników zmieszania δ .

$$\delta^{2} = \frac{\text{udział E2}}{\text{udział M1}} = \frac{\text{intensywność składowej E2}}{\text{intensywność składowej M1}}$$

 A_{22} i A_{44} jest funkcją spinów *I*, multipolowości *L* i współczynników zmieszania δ .

 $\delta^{2} = \frac{\text{udział E2}}{\text{udział M1}} = \frac{\text{intensywność składowej E2}}{\text{intensywność składowej M1}}$ Np. stąd 80%M1+20%E2

$$W_{\gamma\gamma}(\vartheta) = 1 + A_{22}P_2(\cos\vartheta) + A_{44}P_4(\cos\vartheta)$$

Uzyskiwane informacje

Uzyskiwane informacje

Pomiar spinów

Uzyskiwane informacje

Korelacje kątowe γ– γ w jądrze ¹⁴⁰ Sm

Eksperyment

- niskoleżące stany w jądrze ¹⁴⁰Sm były wzbudzane w rozpadach ¹⁴⁰Eu→ ¹⁴⁰Sm i ¹⁴⁰Gd→ ¹⁴⁰Eu→ ¹⁴⁰Sm
- jądra ¹⁴⁰Eu i ¹⁴⁰Gd były produkowane w reakcji
 ¹¹²Cd + ³²S o energii 155MeV
- kwanty gamma rejestrowane przez 15 detektorów HPGe w przerwach między impulsami wiązki

Analiza moich danych wykazała, że w zbadanych przypadkach otrzymane wyniki nie zgadzają się z dotychczasowymi danymi podanymi przez R. Firestone'a (Phys. Rev. C,43 (1991) 43).

Wynik pomiarów (maj 2014). Porównanie z przewidywaniami teoretycznymi dla sekwencji spinów $I \rightarrow 2 \rightarrow 0$ dla I = 0, 1, 2, 3, 4;

czyste przejście kwadrupolowe,

○ - czyste przejście dipolowe.

Wyniki eksperymentu

Drugi pomiar korelacji

- niskoleżące stany w jądrze ¹⁴⁰Sm były wzbudzane w rozpadach ¹⁴⁰Eu \rightarrow ¹⁴⁰Sm i ¹⁴⁰Gd \rightarrow ¹⁴⁰Eu \rightarrow ¹⁴⁰Sm
- jądra ¹⁴⁰Eu i ¹⁴⁰Gd były produkowane w reakcji ¹⁴⁰Pd + ⁴⁰Ar o energii 187MeV
- Kwanty gamma rejestrowane przez 15 detektorów HPGe w przerwach między impulsami wiązki

Co wynika z pomiaru czasu życia?

- $\tau(2_1^+) = 9.1(6)$ ps $\rightarrow B(E2; 2_1^+ \rightarrow 0_1^+) = 51(4)$ W.u.
- β=0.17

Co wynika ze wzbudzeń kulombowskich?

	Eksperyment	Sztywny rotor γ=30° tzn. trójosiowy	
$E(4_1^+)/E(2_1^+)$	2.35	2.67	Wyklucza to rotor sztywny osiowo- symetryczny $\gamma=0^{\circ}\rightarrow 3.33$,
$E(2_2^+)/E(2_1^+)$	1.86	2	Dobra zgodność z rotorem γ=30°
$\frac{B(E2; 4_1^+ \to 2_1^+)}{B(E2; 2_1^+ \to 0_1^+)}$	1.30(14)	1.39	Dobra zgodność z rotorem γ=30°
$\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_1^+ \to 0_1^+)}$	1.52(25)	1.43	Dobra zgodność z rotorem γ=30°
$B(E2; 2_2^+ \to 0_1^+)$	$< 0.001 e^2 b^2$	0	Dobra zgodność z rotorem γ=30°

Efekt wykorzystania wszystkich wiadomości o ¹⁴⁰Sm

PHYSICAL REVIEW C 92, 044322 (2015)

Revised spin values of the 991 keV and 1599 keV levels in ¹⁴⁰Sm

J. Samorajczyk,^{1,2,*} M. Klintefjord,³ Ch. Droste,⁴ A. Görgen,³ T. Marchlewski,^{1,4} J. Srebrny,¹ T. Abraham,¹ F. L. Bello Garrote,³ E. Grodner,⁴ K. Hadyńska-Klęk,³ M. Kisieliński,^{1,5} M. Komorowska,^{1,4} M. Kowalczyk,^{1,4} J. Kownacki,^{1,5} P. Napiorkowski,¹ R. Szenborn,⁴ A. Stolarz,¹ A. Tucholski,¹ and G. M. Tveten³

PHYSICAL REVIEW C 92, 024317 (2015)

Lifetime measurement for the 2⁺₁ state in ¹⁴⁰Sm and the onset of collectivity in neutron-deficient Sm isotopes

F. L. Bello Garrote,¹ A. Görgen,¹ J. Mierzejewski,² C. Mihai,³ J. P. Delaroche,⁴ M. Girod,⁴ J. Libert,⁴ E. Sahin,¹ J. Srebrny,² T. Abraham,² T. K. Eriksen,¹ F. Giacoppo,¹ T. W. Hagen,¹ M. Kisielinski,² M. Klintefjord,¹ M. Komorowska,² M. Kowalczyk,² A. C. Larsen,¹ T. Marchlewski,² I. O. Mitu,³ S. Pascu,³ S. Siem,¹ A. Stolarz,² and T. G. Tornyi^{1,5}

PHYSICAL REVIEW C 93, 054303 (2016)

Structure of low-lying states in ¹⁴⁰Sm studied by Coulomb excitation

M. Klintefjord,¹ K. Hadyńska-Klęk,^{1,2} A. Görgen,^{1,*} C. Bauer,³ F. L. Bello Garrote,¹ S. Bönig,³ B. Bounthong,^{4,5}
A. Damyanova,⁶ J.-P. Delaroche,⁷ V. Fedosseev,⁸ D. A. Fink,⁸ F. Giacoppo,^{1,†} M. Girod,⁷ P. Hoff,⁹ N. Imai,¹⁰ W. Korten,¹¹
A.-C. Larsen,¹ J. Libert,⁷ R. Lutter,¹² B. A. Marsh,⁸ P. L. Molkanov,¹³ H. Naïdja,^{4,5} P. Napiorkowski,¹⁴ F. Nowacki,^{4,5}
J. Pakarinen,^{15,16} E. Rapisarda,^{8,17} P. Reiter,¹⁸ T. Renstrøm,¹ S. Rothe,^{8,19} M. D. Seliverstov,¹³ B. Siebeck,¹⁸ S. Siem,¹
J. Srebrny,¹⁴ T. Stora,⁸ P. Thöle,¹⁸ T. G. Tornyi,¹ G. M. Tveten,¹ P. Van Duppen,¹⁷ M. J. Vermeulen,²⁰ D. Voulot,⁸ N. Warr,¹⁸
F. Wenander,⁸ H. De Witte,¹⁷ and M. Zielińska¹¹

DZIĘKUJĘ ZA UWAGĘ.

spin	energia poziomu	E(I)/E(2+) eksperyment	E(I)/E(2+) model
2+	530.95 keV	1	1
4+	1246.52 keV	2.35	2.1
0+	1599.1 keV	3.01	3.2
0+	1628.65 keV	3.07	3.2
0+	1933.15 keV	4.9	5.3