Proces wzbudzenia jądra atomowego poprzez wychwyt elektronu do powłoki elektronowej atomu (NEEC)

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Seminarium Fizyki Jądra Atomowego, Uniwersytet Warszawski 19/01/2023

Jacek Rzadkiewicz

Plan prezentacji

- Wprowadzenie
- Wcześniejsze próby obserwacji procesu NEEC
- Eksperyment w 'Argonne National Laboratory'
- Eksperyment w 'Heavy Ion Research Facility' Lanzhou
- Próby opisu teoretycznego procesu NEEC
- Podsumowanie i dalsze możliwe plany badań

Artistic vision of the NEEC process Carroll, Parks, and Proctor (U.S. ARL)

- Po sformułowaniu hipotezy o istnieniu długotrwałych stanów wzbudzonych pierwszy taki stan (izomer jądrowy) został odkryty niemal dokładnie 100 lat temu przez Otto Hahn'a.
- Był to ²³⁴Pa (protaktyn-234), który ma stan podstawowy z $T_{1/2} \sim 6,7$ h i stan wzbudzony $z T_{1/2} \sim 1,2 min.$

Walker, Radiation Physics and Chemistry 2022

Wprowadzenie

Otto Hahn i Lise Meitner w 1913 r.

Wprowadzenie

- Energie wzbudzenia izomerów obejmują szeroki zakres od 8 eV w ²²⁹Th do ponad 13 MeV w ²⁰⁸Pb i ¹⁴⁸Gd.
- Energia zmagazynowana w izomerach rzędu tysięcy lub milionów eV jest znacznie większa od typowej energii chemicznej - rzędu 1 eV.

J. Rzadkiewicz, 19/01/2023

///////

Wprowadzenie

- Możliwość kontroli procesu wzbudzenia / wymuszonej deekscytacji izomeru, mogłaby pozwolić na potencjalne zastosowania, takie jak nanobaterie jądrowe czy lasery promieniowania
- Z punktu widzenia rozwoju nowych form magazynowania i uwalniania energii, szczególnie interesująca wydaje się klasa izomerów charakteryzująca się wysoką energią wzbudzenia i długim czasem połowicznego zaniku

Walker & Dracoulis. Nature 1999

Wymuszone uwalnianie energii ze stanów izomerycznych

Izomery o energii wzbudzenia tuż poniżej tzw. stanu pośredniego (ang. intermediate state), który może de-ekscytować z pominięciem stanu izomerycznego potencjalnie umożliwia kontrolowane uwalnianie energii poprzez emisję kwantów gamma

intermediate state

long-lived isomer

ground state

Walker, Radiation Physics and Chemistry 2022

Wymuszone uwalnianie energii ze stanów izomerycznych

Photo-excitation γ 1-1.2 MeV ->^{180m}Ta (J^{π} =9⁻, E_x=75 keV)

Coulomb excitation ^{32,36}S (70-130 MeV)->^{180m}Ta

quolombo Coulombo 60 80 100 120 140 Projectile Energy (MeV)

C. SCHLEGEL et al. PRC 1994

Proces wzbudzenia jądra atomowego poprzez wychwyt elektronu do powłoki elektronowej atomu

- Innym mechanizmem, który prowadzi do uwalniania energii na żądanie z izomeru, jest wzbudzenie jądrowe zachodzące poprzez wychwyt elektronu do powłoki elektronowej atomu (NEEC)
- NEEC jest odwróconym w czasie procesem konwersji wewnętrznej, jest również analogiem atomowej rekombinacji dwuelektronowej (DR), w której wzbudzenia atomowe zastępuje wzbudzenie jądrowe

Dielectronic Recombination

Biela-Nowaczyk et al., Atoms 2023

Proces NEEC jako metoda produkcji stanów izomerycznych

Goldanskii i Namiot w roku 1976 zaproponowali przeprowadzenie obserwacji procesu NEEC w ²³⁵U w środowisku plazmy laserowej $n_{e}=10^{24}$ cm⁻³, $T_{e}=50-100$ eV

Oszacowali, że dla wyładowania lasera o energii 10 J i czasu wyładowania 10⁻⁹ s prawdopodobieństwo zajścia procesu NEEC (wzbudzenia stanu podstawowego 7/2⁻ do stanu izomerycznego 1/2+) wynosi ~3 x 10-14

Goldanskii and Namiot, Physics Letters B 1976

Eksperymentalne próby obserwacji procesu NEEC

W roku 2004 Morel et al. przeprowadzili eksperyment na spektrometrze

Eksperymentalne próby obserwacji procesu NEEC

W roku 2007 Palffy i in. pokazali że proces NEEC może być efektywnym sposobem wzbudzania stanów izomerycznych

$^{A}_{Z}X$	$t_{1/2}$	E_m (keV)	E_T (keV)	L
⁹³ ₄₂ Mo	6.85 h	2424.89	2429.69	<i>E</i> 2
¹⁵² Eu	9.31 h	45.599	65.296	M1
$^{178}_{72}$ Hf	31 yr	2446.05	2573.5	M2
¹⁸⁹ Os	5.8 h	30.812	216.661	<i>M</i> 1 + <i>E</i> 2
$^{204}_{92}$ Pb	67.2 m	2185.79	2264.33	<i>E</i> 2
²³⁵ ₉₂ U	26 m	0.076	51.709	<i>E</i> 2
²⁴² ₉₅ Am	141 yr	48.60	52.70	<i>E</i> 2

$^{A}_{Z}X$	nl_j	E_c (keV)	$S_{\text{NEEC}}^{I \to F} (b \text{ eV})$	$S_{x ray}^{I \rightarrow F} (b eV)$
⁹³ ₄₂ Mo	$3p_{3/2}$	2.113	9.1×10^{-6}	1.4×10^{-8}
¹⁵² ₆₃ Eu	$2s_{1/2}$	5.204	$3.4 imes 10^{-4}$	$6.5 imes 10^{-5}$
$^{178}_{72}{ m Hf}$	$1s_{1/2}$	51.373	$2.0 imes 10^{-7}$	$5.4 imes 10^{-8}$
¹⁸⁹ 76Os	$1s_{1/2}$	131.050	1.2×10^{-3}	2.2×10^{-2}
²⁰⁴ ₉₂ Pb	$2p_{3/2}$	55.138	$4.9 imes 10^{-5}$	$8.7 imes10^{-6}$
²³⁵ ₉₂ U	$2p_{1/2}$	21.992	$1.3 imes 10^{-1}$	1.3×10^{-2}
²⁴² ₉₅ Am	$5p_{3/2}$	0.135	$3.6 imes 10^{-3}$	$2.4 imes 10^{-8}$

Palffy et al., PRL 2007

eksperymentu NEEC z wykorzystaniem wiązki ciężkich jonów i układu tarcz

Reaction	Product nuclide		Intermediate	Intermediate Energy above Atomic state Reso	c state R	Resonance energy.	Electron	
	Isomer	Spin, parity	parity	isomer, keV	Charge	Vacancy	MeV/u	energy, keV
${}^{4}\text{He}({}^{91}\text{Zr},2n)$	^{93m} Mo	$21/2^{+}$	17/2+	4.8	36+	$3p_{3/2}$	4.91	2.67
$^{2}\mathrm{H}(^{241}\mathrm{Pu},n)$	$^{242m}\mathrm{Am}$	5-	3-	4.1	42+	$5p_{3/2}$	4.89	2.66

W roku 2012 Karamian i Carroll jako pierwsi zaproponowali 'jakościowy schemat'

Karamian and Carroll., Phys. At. Nucl (2012)

12

- Jądro ⁹³Mo posiada stan izomeryczny 21/2+ o energii 2425 keV z okresem połowicznego zaniku 6,85 h i stan pośredni 17/2+, leżący 4,85(9) keV powyżej sanu izomerycznego
- Stan pośredni 17/2+, zasilany w procesie NEEC niemal natychmiast rozpada się ($t_{1/2} = 3,5$ ns) do stanu podstawowego przez charakterystyczne przejścia gamma o energiach 268 keV, 685 keV i 1 478 keV
- Ponieważ przejście 268-keV nigdy nie powinno być widoczne w sekwencji rozpadu stanu izomerycznego 21/2+, można je uznać za jednoznaczną sygnaturę procesu wzbudzenia, w szczególności procesu NEEC

Polasik. et al., PRC 2017

obserwacji procesu NEEC w warunkach oddziaływania jon-atom.

J. Rzadkiewicz, 19/01/2023

W roku 2017 przedstawiono optymalne warunki eksperymentalne konieczne do

14

- Eksperyment przeprowadzono na liniowym akceleratorze ciężkich jonów ATLAS w Argonne National Laboratory
- Do produkcji stanów izomerycznych użyto wiązki jonów ⁹⁰Zr o energii 840-MeV i średniej intensywności około 6×10⁸ jonów / s oraz tarczy Li o grubości 1.55 mg cm⁻²

WIERK

Nature (2018) Guo et al. (2022)

- Odpowiednia grubość tarczy Li uwzględniająca z jednej strony efektywną produkcję izotopów ⁹³Mo, a z drugiej odpowiednio duże energie 'na wejściu' tarczy ¹²C
- Odpowiednia przerwa między tarczami Li i C tak aby ulletpikosekundowe stany leżące powyżej stanu izomerycznego 21/2+ zdążyły go zasilić
- **Odpowiednia grubość tarczy** ¹²**C** tak aby przeprowadzić lacksquarejon ^{93m}Mo przez pełen obszar rezonansów, odpowiednio w powłoce L, M i N.

Sygnatura procesu NEEC dla ^{93m}Mo

J. Rzadkiewicz, 19/01/2023

///////

Prawdopodobieństwo wzbudzenia stanu izomerycznego ^{93m}Mo

Wykluczenia procesów konkurencyjnych mogących prowadzić do wzbudzenia stanu izomerycznego ^{93m}Mo

 Inelastic-scattering excitation

• NEET

Coulomb excitation

 6×10^{-8} , 2×10^{-6} and 3×10^{-6} in the Li, C and Pb

The inelastic-scattering cross-sections for exciting ^{93m}Mo to the intermediate state,

Possible overestimation of isomer depletion due to contamination

Zasugerowano możliwe przypadkowe koincydencje przejścia 268-keV ze stanu pośredniego 17/2⁺ z sekwencyjnymi przejściami do stanu podstawowego 5/2⁺, co potencjalnie mogłoby zwiększyć mierzone prawdopodobieństwa procesu NEEC w ^{93m}Mo

$$P_{chance} = 0.03 - 0.5\%$$
.

Reply to: Possible overestimation of isomer depletion due to contamination

- W odpowiedzi na prace Guo i in. Nature 2021 przeprowadzono dodatkową analizę danych pomiarowych w celu zweryfikowania górnego limitu możliwych przypadkowych koincydencji linii 268-keV i linii 1478-keV w krótkim oknie koincydencjnym (90 ns) a linii 685-keV w krótkim (90 ns) i w pełnym oknie koincydencjnym (2 µs)
- Analizy wykazały, że błąd systematyczny związany z przypadkową koincydencją linii 268 keV nie przekracza ~0.1%.

Chiara et al. Nature 2021

- W roku 2022 opublikowano pracę dotyczącą kolejnej próby eksperymentalnej obserwacji procesu NEEC dla ^{93m}Mo
- Eksperyment został przeprowadzony w laboratorium w Lanzhou z wykorzystanie radioaktywnej wiązki ciężkich jonów
- Izomery ^{93m}Mo były produkowane w reakcji ¹²C(⁸⁶Kr,5n) przy energii wiązki 559 MeV (6.5 MeV/u)
- Jony ^{93m}Mo o stanie ładunkowym q=36+ oraz energii 460 MeV były transportowane (35 m) do drugiej tarczy ¹²C ('tarcza NEEC')
- Jony ^{93m}Mo³⁶⁺ zostały spowolnione i ostatecznie zatrzymane w plastikowym detektorze pokrytym folią węglową o grubości 20 µm.

Guo et al. PRL 2022

- Kwanty y zostały były rejestrowane przez 5 detektorów germanowych o wysokiej czystości (HPGe) wyposażonych w osłony anty-Comptonowskie
- Dane zbierano przez 93h z wiązką *on-line*, 18.4h z wiązką *off-line* (24h pomiary tła)
- W eksperymencie nie zaobserwowano linii y o energii 268 keV, która byłaby sygnaturą procesu NEEC dla eksperymentu w Lanzhou
- Wyznaczony górny limit dla prawdopodobieństwa NEEC $P_{NEEC} = 2 \times 10^{-5}$

Guo et al. PRL 2022

Całkowite teoretyczne prawdopodobieństwo zajścia procesu NEEC dla izomeru ^{93m}Mo to suma prawdopodobieństw cząstkowych po wszystkich możliwych kanałach rekombinacji α i wszystkich dostępnych stanach ładunkowych *q* jonów ^{93m}Mo zintegrowanych w czasie oddziaływania jon-atom

$$P = \sum_{q,\alpha} \int f_q \phi \sigma_q^\alpha dt,$$

gdzie f_q jest frakcją ładunkową jonów, *ф* strumieniem elektronów w układzie spoczynkowym jonu, a σ_a^{α} to przekroje czynne na proces NEEC dla kanału rekombinacyjnego α i jonu w początkowym stanie ładunkowym g

Wu et al., PRL (2019)

Całkowite teoretyczne prawdopodobieństwo można zapisać jako:

$$P = \sum_{q,\alpha} f_q(E_{q,\alpha}^{\text{ion}}) n_e S_q^{\alpha}(E_{q,\alpha}) \frac{m_i}{m_e} \frac{1}{-(dE^{\text{ion}}/dx)|_{E_{q,\alpha}^{\text{ion}}}}$$

		9
-dE/dx	(i) [40]	(ii) [41]
CasP-q	2.66×10^{-11}	2.58×10^{-11}
CasP equilibrium	2.73×10^{-11}	2.54×10^{-11}
Ref. [43]	2.43×10^{-11}	2.26×10^{-11}

Rozbieżność między eksperymentem a teorią wynosi 9 rzędów wielkości!

$$P_{exc} = \frac{RA_{268}(1+\alpha)}{A_{2475}} = 1.0(3) \times 10^{-2}$$

W pierwszym kroku spróbowaliśmy odtworzyć obliczenia sił rezonansowych/prawdopodobieństw otrzymane przez grupę z Heidelberga

$$\begin{split} S_{\text{NEEC}}^{q,nl_{j}} &= g \frac{\lambda_{e}^{2}}{4} \frac{\alpha_{\text{IC}}^{q,nl_{j}}(\text{DS} \rightarrow \text{IS})\Gamma_{\gamma}(\text{DS} \rightarrow \text{IS})}{\Gamma_{\text{tot}}(\text{DS})} \\ &\times [1 + \alpha_{\text{IC}}^{q=0}(\text{DS} \rightarrow \text{FS})]\Gamma_{\gamma}(\text{DS} \rightarrow \text{FS}) \end{split}$$

gdzie λ_e to długość fali wychwytywanych elektronów o energii kinetycznej koniecznej dla zajścia procesu NEEC, g jest funkcją spinów jądrowych i atomowych, $\alpha_{IC}^{q,nlj}$ (DS \rightarrow IS) to cząstkowe współczynniki konwersji wewnętrznej (ICC) dla podpowłoki atomowej nlj i stanu ładunkowego q.

Rzadkiewicz et al., PRL (2021)

- Siły rezonansowe NEEC rosną wraz ze wzrostem q co jest prostą konsekwencją wzrostu energii wiązania elektronów w układach silnie zjonizowanych
- Największe wartości sił rezonansowych występują dla powłoki L jonów ^{93m}Mo
- Jednak w teorii rekombinacyjnej udział powłoki L w ogólnym prawdopodobieństwie NEEC jest silnie tłumiony przez ograniczoną liczbę odpowiednich stanów ładunkowych.

Wu et al., PRL (2019)

J. Rzadkiewicz, 19/01/2023

- W kolejnym kroku zaproponowaliśmy nowe podejście teoretyczne do opisu procesu NEEC, w którym wzbudzenie jądrowe następuje poprzez wychwyt elektronów w procesie transferu elektronu (nie w procesie rekombinacyjnym)
- Przekroje czynne na proces NEEC-RT obliczono jako sumę rozkładów sił rezonansowych ^{93m}Mo profilami elektronów tarczy:

$$\sigma_{\text{NEEC-RT}}^{q,nl_j} = \sum_i \sqrt{\frac{M_p}{2E_p}} J_i(Q) S_{\text{NEEC}}^{q,nl_j}$$

gdzie J_i to profile Comptonowskie elektronów tarczy ¹²C $(1s, 2s i 2p_{1/2})$

Rzadkiewicz et al., PRL (2021)

28

- Po wyliczeniu rozkładów stanów ładunkowych jonów możliwe stało się wyznaczenie efektywnych przekrojów czynnych
- Uwzględnienie profili Comptona elektronów tarczy okazało się mieć fundamentalne znaczenie dla teoretycznego opisu procesu NEEC
- W szczególności pokazaliśmy, że proces NEEC w warunkach oddziaływania jon-atom nie ma charakteru quasi-dyskretnego tylko ma charakter ciągły w funkcji energii pocisku

- powłoki L jest o kilka rzędów wielkości wyższe niż to uzyskane z przewidywań rekombinacyjnych
- W przypadku powłok M i N wzrost prawdopodobieństw NEEC-RT jest znacznie słabszy
- Nasze wyniki tylko nieznacznie przesuwają górny limit teoretyczny granica całkowitego prawdopodobieństwa procesu NEEC dla izomeru ^{93m}Mo w kierunku wartości eksperymentalnej

TABLE I. Partial and total probabilities for 93m Mo isomer depletion as a result of the electron capture into L, M, and N shells of the ion projectile.

	L shell	M shell	N shell	Total $(L + M + N)$
Model (i) ^a Model (ii) ^a Present Experiment ^b	5.68×10^{-18} 1.48×10^{-19} 1.49×10^{-11}	1.53×10^{-11} 1.47×10^{-11} 3.58×10^{-11}	7.54×10^{-12} 7.34×10^{-12} 1.90×10^{-11}	2.28×10^{-11} 2.20×10^{-11} 6.98×10^{-11} $1.0(3) \times 10^{-2}$
^a Wu <i>et al</i> . [28]. ^b Chiara <i>et al</i> . [26].				

Uzyskane przez nas prawdopodobieństwo procesu NEEC-RT w warunkach oddziaływania jon-atom dla

Rzadkiewicz et al., PRL (2021)

Podsumowanie

- 21/2⁺ w ⁹³Mo poprzez wzbudzenie do stanu pośredniczącego 17/2⁺ i sekwencyjny rozpad do stanu podstawowego
- Wyznaczono prawdopodobieństwo depopulację stanu izomerycznego 21/2⁺ w ⁹³Mo na 1,0(3)%
- Zasugerowano możliwość przeszacowania wyznaczonego prawdopodobieństwa przypadkowymi koincydencjami pochodzącymi z wtórnej produkcji jąder ⁹³Mo
- Dodatkowe analizy danych eksperymentalnych wykluczyły możliwość takiego przeszacowania
- Eksperyment przeprowadzony w laboratorium w Lanzhou z wykorzystaniem radioaktywnej wiązki ciężkich jonów nie zaobserwował procesu NEEC
- Obliczenia teoretyczne pokazują prawdopodobieństwa procesu NEEC kilka rzędów wielkości mniejsze niż dane eksperymentalne

W eksperymencie przeprowadzonym w Argonne NL zaobserwowano depopulację stanu izomerycznego

Dalsze możliwe plany badań

• Przeprowadzenie nowych serii pomiarów dla ^{93m}Mo oraz dla innych izomerów

Rzadkiewicz et al., PRC (2019)

- Rozwinięcie modelu opisu teoretycznego procesu NEEC-RT o konfiguracje wzbudzone
- Zastosowanie innego podejścia teoretycznego do opisu procesu NEEC
- Uwzględnienie innych procesów wzbudzania jąder atomowych i być procesów wyższych rzędów NEEC - GSA (a)

Dalsze możliwe plany badań

Gargiulo et al., PRL (2022)

Dziękuję za uwagę!

C. J. Chiara¹, J. J. Carroll¹, M. P. Carpenter², J. P. Greene², D. J. Hartley³, R. V. F. Janssens^{4,5}, G. J. Lane⁶, J. C. Marsh⁷, D. A. Matters⁸, M. Polasik⁹, J. Rzadkiewicz¹⁰, D. Seweryniak², S. Zhu¹¹, S. Bottoni^{12,13} & A. B. Hayes¹¹ K. Słabkowska⁹, Ł. Syrocki⁹

¹DEVCOM/Army Research Laboratory, Adelphi, MD, USA. ²Physics Division, Argonne National Laboratory, Lemont, IL, USA. ³Department of Physics, US Naval Academy, Annapolis, MD, USA. ⁴Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ⁵Triangle Universities Nuclear Laboratory, Duke University, Durham, NC, USA. ⁶Department of Nuclear Physics, Research School of Physics, Australian National University, Canberra, Australian Capital Territory, Australia. ⁷Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA. ⁸National Nuclear Security Administration, Washington, DC, USA. ⁹Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland. ¹⁰National Centre for Nuclear Research, Otwock, Poland. ¹¹National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, USA. ¹²Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy. ¹³Istituto Nazionale di Fisica Nucleare, Sez. Milano, Milan, Italy. ¹²e-mail: christopher.j.chiara2.civ@mail.mil

34