

Coulomb Excitation with Stable and Radioactive Beams

Jack Henderson University of Warsaw Nuclear Physics Seminar, 10/04/2025

1

Why is nuclear physics interesting?

Emergent phenomena in a stronglyinteracting many-body system: Halo-nuclei, bubble nuclei, collective motion.

Nuclear astrophysics: where did the elements come from?

Where are the limits of the nuclear landscape?

The **finite nature** of the nucleus means we can't make trivial use of high-N methods from e.g., material science

Surface terms matter!

Surface terms matter!

Strongly interaction is non-perturbative at low energy (high separation) – cannot trivially neglect low energy (high separation) terms.

The **finite nature** of the nucleus means we can't make trivial use of high-N methods from e.g., material science

Surface terms matter!

Even with a well understood interaction, solving the **many-body** problem is complicated

Nominally requires diagonalizing the complete highly multi-dimensional Hamiltonian

Rapidly becomes intractable

Strongly interaction is non-perturbative at low energy (high separation) – cannot trivially neglect low energy (high separation) terms.

Collective nuclear properties are emergent properties of the nuclear system arising <u>because</u> of the strongly-interacting, many-body nature of the problem

Collectivity (and deformation) is an extreme test of nuclear models

Experimental signature for collectivity is corresponding electric-multipole strength (e.g. E2, E3, E4, etc..)

Inhibited near nuclear magic numbers – but ... everywhere

P. Möller et al., At. Nucl. Data Tables **109** 1 (2016)

Language

The language of deformation is rooted in the Bohr Hamiltonian, which uses Hill-Wheeler coordinates to relate cartesian axis lengths to β and γ deformation parameters

$$R_{k} = R_{0}(1 + \frac{5}{4\pi}\beta_{2}\cos(\gamma - \frac{2}{3}\pi k))$$

0.7

The Method: Coulomb excitation

Why Coulomb excitation?

Electromagnetic ("model independent") probe of the nucleus

Sensitive to magnitudes and (relative) signs of electric multipole matrix elements including spectroscopic quadrupole moments

Large cross sections – well-suited to RIB

Exceptional probe of nuclear deformation through sum rules Kumar PRL **28** 249 (1972)

The Method: Coulomb excitation

How do we access quadrupole moments?

Qualitative picture: Nuclei reorient in electric field gradient to minimize their energy

Breaks m-state degeneracy

Since angle and impact parameter are related, this introduces an additional angular dependence to the cross section

Also influences the angle-integrated cross-section

Measure the distribution and/or the integrated cross-section and access the quadrupole moment

$$\frac{da_k}{d\omega} = -i \sum_{\lambda\mu n} Q_{\lambda\mu}(\epsilon, \omega) \zeta_{kn}^{\lambda\mu} \langle I_k | M(\lambda) | I_n \rangle e^{(i\xi_{kn}(\epsilon \sinh \omega + \omega))} a_n(\omega)$$

a = (sub)state amplitude $\mu = magnetic substate$ k = (sub)state being populated n = (sub)state connected to k $\lambda = multipole$ $\langle I_k | M(\lambda) | I_n \rangle = electromagnetic matrix element$ connecting k and n $Q_{\lambda\mu}(\epsilon, \omega) = collision function$ $\zeta_{kn}^{\lambda\mu} = coupling parameter$ $\xi_{kn} = adiabaticity parameter$

Results

Results

A quintessential doubly-magic system

Spherical* ground state Poves *et al.* PRC **101** 054307 (2020)

First-excited 3⁻ state, an octupole vibration D. Goutte *et al.* PRL **45** 1618 (1980)

A key benchmark for models and our understanding of EoS through neutron-skin B. Hu *et al.* Nature Physics **18** 1196 (2022) D. Adhikari *et al.* PRL **126** 172502 (2021)

Radon Z=86	²⁰⁴ Rn _{74.52 s}	205 Rn	206 Rn 5.67 m	207 Rn 925 m	208 Rn 24.35 m	209 Rn 28.8 m	²¹⁰ Rn	211 Rn 14.8%	212 Rn 23.9 m	²¹³ Rn ^{19.5 ms}	²¹⁴ Rn ^{259 ns}	²¹⁵ Rn 2.3 µs	²¹⁶ Rn ^{29 με}
Astatine Z=85	203At	204 At	205At	206At 30.6 m	207At	208At #7.8.m	209At	210At	211At 7.814 h	²¹² At 314 ms	²¹³ At 125 ns	²¹⁴ At 558 ns	²¹⁵ Аt ^{37 µs}
Polonium Z=84	²⁰² P0 45.0 m	203 Po # 7 m	204P0 211.14m	205 PO 104.4 m	206P0	207 PO	²⁰⁸ Ро 2.896 у	²⁰⁹ Po ^{124 y}	²¹⁰ Po 138.376 d	²¹¹ P0 516 ms	²¹² Po ^{294.4 ns}	²¹³ Ро ^{3.705 µs}	²¹⁴ Ρο ^{163,47 μs}
Bismuth Z=83	201 Bi 102 m	202 Bi 103.2.m	203 Bi 11.70 h	204Bi	205 Bi 14919	206Bi	²⁰⁷ Ві ^{31.20 у}	208 <mark>8</mark> 1 068 Ny	²⁰⁹ Bi _{20.1 Ey}	210 Bi 5.012 d	²¹¹ Bi 128.4 s	²¹² Bi 60.55 m	²¹³ Bi _{45.6 m}
Lead Z=82	200 Pb	201 Pb 9395	202 Pb 58.5 ky	203 Pb 81.864 h	²⁰⁴ Pb	205 Pb	²⁰⁶ Pb	²⁰⁷ Pb	¹⁰⁸ Pb	209 Pb 194.1 m	210 Pb 22.2 y	211 Pb 36.1628 m	212 Pb 10.627 h
Thallium Z=81	199 7) 7.426	200 T 361 h	20 TI 750065	202 71 12.91 e	²⁰³ TI	204 TI 3.783 y	²⁰⁵ TI	206 7 4.202 m	207 T 4.77 m	208 T 183.18 s	209 T 129.72 s	210 T 78 s	217 T 81 s
Mercury Z=80	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	203 Hg 46.61 d	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg ^{8.32 m}	²⁰⁷ Hg	²⁰⁸ Hg	²⁰⁹ Hg	²¹⁰ Hg
Gold Z=79	¹⁹⁷ Au	¹⁹⁸ Au 64.671360 h	199 Au 75.336 h	²⁰⁰ Au _{48.4 m}	²⁰¹ Au 26 m	²⁰² Au ^{28.4 s}	²⁰³ Au	²⁰⁴ Au _{38,3 s}	²⁰⁵ Au ^{32 s}	²⁰⁶ Au 47 s	207Au	208Au 20 s	209Au 1000 ms
Platinum Z=78	¹⁹⁶ Pt	197 Pt 19.8915 h	¹⁹⁸ Pt	199 Pt 30.8 m	200Pt	201Pt	²⁰² Pt	203Pt 22 s	²⁰⁴ Pt	205 Pt	206 Pt 500 ms	207Pt	208Pt 220 ms
Platinum Z=78	196Pt		198Pt					203 Pt	1073 - 504 bf	205Pt	soept		

Lead-208 targets often used in Coulomb excitation – clean spectra!

Combine data from four separate Coulombexcitation measurements: ¹⁶⁶Er, ¹⁵⁰Nd, ¹³⁰Te and ⁷⁰Ge

See $3_1^- \rightarrow 0_1^+$ and $2_1^+ \rightarrow 0_1^+$ transitions

All data taken with CHICO2 and GRETINA in 2022

Data analysed and matrix elements simultaneously minimised using GOSIA <u>https://github.com/jhenderson88/GOSIAFitter</u>

JH et al. submitted for publication

Extract $\langle 0_1^+ | E2 | 2_1^+ \rangle$, $\langle 0_1^+ | E3 | 3_1^- \rangle$, $\langle 2_1^+ | E2 | 2_1^+ \rangle$ and $\langle 3_1^- | E2 | 3_1^- \rangle$ matrix elements and their *correlations*

Constrain the data by including literature $\langle 0_1^+ | E2 | 2_1^+ \rangle [B(E2; 0_1^+ \rightarrow 2_1^+)]$ and $\langle 0_1^+ | E3 | 3_1^- \rangle [B(E3; 0_1^+ \rightarrow 3_1^-)]$

Able to tightly constrain both $\langle 2_1^+ | E2 | 2_1^+ \rangle$ [$Q_s(2_1^+)$] and $\langle 3_1^- | E2 | 3_1^- \rangle$ [$Q_s(3_1^-)$]

Consistent with Vermeer *et al.* Australian Journal of Physics **37** 123 (1984) but improved uncertainty

JH et al. submitted for publication

Skyrme models best reproduce B(EL) and energies but **no** Q_s values and **no** indication of preference for prolate deformation

SCCM calculations *over* predict excitation energies and B(EL) values but **do** reproduce signs and similarity of $Q_s(2^+)$ and $Q_s(3^-)$

SM fails to reproduce the signs and magnitudes of the Q_s values but does reproduce energies and B(E3)

No model able to reproduce the electromagnetic observables

JH et al. submitted for publication

JH et al. submitted for publication

JH et al. submitted for publication

With thanks to:

J. Henderson,^{1,*} J. Heery,¹ M. Rocchini,^{2,3} M. Siciliano,⁴ N. Sensharma,⁴ A. D. Ayangeakaa,^{5,6}
R. V. F. Janssens,^{5,6} T. M. Kowalewski,^{5,6} Abhishek,¹ P. D. Stevenson,¹ E. Yuksel,¹ B. A. Brown,^{7,8}
T. R. Rodriguez,^{9,10,11} L. M. Robledo,^{10,11,12} C. Y. Wu,¹³ S. Kisyov,^{13,†} C. Müller-Gatermann,⁴
V. Bildstein,³ L. Canete,¹ C. M. Campbell,¹⁴ S. Carmichael,¹⁵ M. P. Carpenter,⁴ W. N. Catford,¹
P. Copp,^{4,‡} C. Cousins,¹ M. Devlin,¹⁶ D. T. Doherty,¹ P. E. Garrett,³ U. Garg,¹⁵ L. P. Gaffney,¹⁷
K. Hadynska-Klek,¹⁸ D. J. Hartley,¹⁹ S. F. Hicks,^{20,21} H. Jayatissa,^{4,‡} S. R. Johnson,^{5,6} D. Kalaydjieva,²²
F. Kondev,⁴ D. Lascar,²³ T. Lauritsen,⁴ G. Lotay,¹ N. Marchini,² M. Matejska-Minda,²⁴ S. Nandi,⁴
A. Nannini,² C. O'Shea,¹ S. Pascu,^{1,25} C. Paxman,¹ A. Perkoff,²⁶ E. E. Peters,²⁰ Zs. Podolyák,¹ A. Radich,³
R. Rathod,¹⁵ B. J. Reed,^{1,§} P. H. Regan,^{1,27} W. Reviol,⁴ E. Rubino,^{7,¶} R. Russell,¹ D. Seweryniak,⁴
J. R. Vanhoy,¹⁹ G. L. Wilson,^{4,28,**} K. Wrzosek-Lipska,¹⁸ S. Yates,^{5,6} S. W. Yates,²⁰ and I. Zanon²⁹

Region around N=Z=40 (8°Zr) associated with strong deformation

Driven by quasi-SU3 symmetry - strong $\langle Q \cdot Q \rangle$ interaction between $g_{9/2}$ and $d_{5/2}$ orbitals

Completely erases the influence of the HO shell closure (i.e. ⁹⁰Zr)

Predictions from PMMU interaction of a region of *prolate* deformation

Strontium-80 quadrupole moment extracted from angular distribution

Verified consistency with both literature 2_1^+ state lifetimes

Limited correlation between $\langle 0_1^+ | E2 | 2_1^+ \rangle$ and $\langle 2_1^+ | E2 | 2_1^+ \rangle$

Large uncertainty dominated by background from ⁸⁰Se Coulomb excitation

R. Russell et al. submitted for publication

Comparison with PMMU calculations

Predict near-axial, prolate systems around N=Z=40

 $\frac{Q_s(2^+_1)}{Q_{s,rot}(2^+_1)}\approx -1$

Even with large uncertainty, experimental $Q_s(2_1^+)$ is **inconsistent** with this prediction

More consistent with *triaxial* or *oblate* deformations

R. Russell et al. submitted for publication

Contrary to PMMU calculation predictions, ⁸⁰Sr appears to be *triaxial* or *oblate*

Any island of strong, prolate, axial deformation around N=Z=40 is confined to ^{76,78}Sr and ^{78,80}Zr

Recently presented (as-yet unpublished) SM results imply a different mechanism – more varied shapes

JANUS — A setup for low-energy Coulomb excitation at ReA3 ☆

E. Lunderberg ^{a b}, J. Belarge ^{a 1}, P.C. Bender ^a, B. Bucher ^c, D. Cline ^d, B. Elman ^{a b}, A. Gade ^{a b} $\stackrel{\wedge}{\sim}$ \boxtimes , S.N. Liddick ^{a e}, B. Longfellow ^{a b}, C. Prokop ^{a e}, D. Weisshaar ^a, C.Y. Wu ^c

Neutron-deficient Sr (should be) accessible at FRIB-ReA6: a priority to perform safe Coulomb excitation

With thanks to:

R. Russell^a, J. Heery^a, J. Henderson^{a,*}, R. Wadsworth^b, K. Kaneko^c, N. Shimizu^d, T. Mizusaki^e, Y. Sun^f, C. Andreoiu^h,
D. W. Annen^h, A. A. Avaaⁱ, G. C. Ballⁱ, V. Bildstein^j, S. Buck^j, C. Cousins^a, A. B. Garnsworthyⁱ, S. A. Gillespie^k, B. Greaves^j,
A. Grimesⁱ, G. Hackmanⁱ, R. O. Hughes¹, D. G. Jenkins^b, T. M. Kowalewski^{m,n}, M. S. Martin^g, C. Müller-Gatermann^o,
J. R. Muriasⁱ, S. Murillo-Moralesⁱ, S. Pascu^{a,p}, D. M. Rhodes^{i,1}, J. Smallcombe^q, P. Spagnoletti^h, C. E. Svensson^{i,j}, B. Wallis^b,
J. Williamsⁱ, C. Y. Wu¹, D. Yates^{i,r}

10/04/2025

Coulomb excitation as a tool for nuclear medicine

Scattered beam from ¹³⁶Xe caused issues at FMA focal plane – challenging to interpret online data

Changed the beam/target combination to ⁴⁰Ar/¹⁹⁷Au

Almost a repeat of the FMA/EMMA commissioning experiments

Lighter beam + heavier target massively reduced scattered beam at FMA focal plane

S3-detector at backwards angles to provide normalisation (potential for CoulEx measurement of ⁴⁰Ar?)

Method:

Reset foil (carbon) located at ~1 cm from target

Recoiling Au ions at ~80 MeV (~0.9 cm/ns)

All states above 77 keV have half-lives ~10 ps or lower

Gate on 191-keV gamma-ray populating 77-keV state

Measure charge state

Will have low-charge (gamma-decay and IC before reset) and high-charge (IC after foil) component

Centroid difference between HC and LC gives mean Auger-electron multiplicity

Charge-state distribution measurements

With thanks to:

J. Heery^{1,2}, J. Henderson¹, T. Budner³, M.P. Carpenter³, W. Catford¹, J. Chadderton⁴,
R. Chakma³, S. Collins², C. Cousins¹, J. Cubiss⁵, A. Dewald⁶, D. Doherty¹, F. Dunkel⁶, S. Dutta⁷,
A. Ertoprak³, C. Fransen⁶, R.-D. Herzberg⁴, V. Karayoncev³, B. Kay³, T. Kibédi⁸, F. G. Kondev³,
C.-D. Lakenbrink⁶, T. Lauritsen³, G. Lorusso², G. Lotay¹, C. Müller-Gatermann³, B. S. Nara Singh⁷, J. Nolan³, D O'Donnell⁷, E. O'Sullivan^{1,2}, S. Pascu¹, Z. Podolyák¹, P. H. Regan^{1,2},
A. Renne³, W. Reviol³, R. Russell¹, J. Sarén⁹, N. Sensharma³, D. Seweryniak³, R. Shearman²,
M. Siciliano³, F. von Spee⁶, P. Stollenberg³, S. Suman¹⁰, S.K. Tandel¹⁰, J. Uusitalo⁹, J. Vilhena⁷,

10/04/2025

10/04/2025