QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	0000000		000000	000000000

On the nature of the shape coexistence and the quantum phase transition phenomena in the zirconium and lead region

José-Enrique García-Ramos

21 April 2022

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	00000000	000000000000000000000000000000000000000	000000	000000000

Table of contents

1 What Shape Coexistence and Quantum Phase Transition are

- Shape Coexistence: the basics
 - Mean field
 - Shell Model
 - Interacting Boson Model
- Macroscopic phase transitions
- Quantum Phase Transition
- 2 Key indicators
 - Shape coexistence indicators
 - Quantum Phase Transition indicators
- 3 The Zr and Sr case
 - Experimental evidences
 - Interacting Boson Model calculations
 - Analysis
- Discussion and conclusions
 - Discussion
 - Conclusions

Shape Convictories the basics					
•••••					
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	

What Shape Coexistence (SC) is?

It appears in quantum systems where eigenstates with very different density distribution coexist. Therefore, the existence of a geometric interpretation is implicit.

Quadrupole shape invariants

$$\begin{array}{lll} q_{2,i} & = & \sqrt{5} \langle 0_i^+ | [\hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_{3,i} & = & -\sqrt{\frac{35}{2}} \langle 0_i^+ [\hat{Q} \times \hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ & q_2 = q^2, q_3 = q^3 \cos 3 \, \delta. \end{array}$$

00000 00000	0000000	000000000000000000000000000000000000000	000000	000000000
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup

What Shape Coexistence (SC) is?

It appears in quantum systems where eigenstates with very different density distribution coexist. Therefore, the existence of a geometric interpretation is implicit.

Quadrupole shape invariants

$$\begin{array}{lll} q_{2,i} &=& \sqrt{5} \langle 0_i^+ | [\hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_{3,i} &=& -\sqrt{\frac{35}{2}} \langle 0_i^+ [\hat{Q} \times \hat{Q} \times \hat{Q}]^{(0)} | 0_i^+ \rangle, \\ q_2 &=& q^2, q_3 = q^3 \cos 3 \, \delta. \end{array}$$

Shape Coexistence: the basics					
000000000					
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	

Mean field: example of triple coexistence

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
000000000				
CI C 1.				

Mean field: example of triple coexistence

The angular momentum projected mean field plus the Generator Coordinate Method generates different bands with very different deformation.

hape Coexistence: the basics					
000000000					
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	

Shell model. Where to be used

- For nuclei near to closed shells, either for neutrons or for protons, it can be energetically favorable to have excitations of 2p-2h, 4p-4h ... crossing the energy gap.
- The np-nh excitations have a lower excitation energy than expected due to the correlation energy: pairing and deformed correlations.
- Restricted to light and medium-heavy nuclei, at present.

In heavy nuclei the huge model space imposes some kind of truncation: symmetry dictated truncation.

hape Coexistence: the basics					
000000000					
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	

Shell model. Where to be used

- For nuclei near to closed shells, either for neutrons or for protons, it can be energetically favorable to have excitations of 2p-2h, 4p-4h ... crossing the energy gap.
- The np-nh excitations have a lower excitation energy than expected due to the correlation energy: pairing and deformed correlations.
- Restricted to light and medium-heavy nuclei, at present.

In heavy nuclei the huge model space imposes some kind of truncation: symmetry dictated truncation.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000				
CL C 1.				

Shape Coexistence: the basics

Competition of interactions

The effect of the different components

Figures taken from K. Heyde et al., Nuclear Physics A466, 189

(1987).

Gap versus deformation

The precise balance between the gap size and the contribution of residual interaction will determine the shape of the nucleus.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	
0000000000					
hape Coexistence: the basics					

A symmetry guided approximation: the IBM

Nucleons couple preferably in pairs with angular momentum either equal to 0 (S) or equal to 2 (D). Those pairs are then described by means of bosons: s and d.

$$s^{\dagger}, d_m^{\dagger}(m = 0, \pm 1, \pm 2)$$

 $s, d_m(m = 0, \pm 1, \pm 2)$

with

$$\begin{split} [\gamma_{lm},\gamma_{l'm'}^{\dagger}] &= \delta_{ll'}\delta_{mm'},\\ [\gamma_{lm}^{\dagger},\gamma_{l'm'}^{\dagger}] &= 0, [\gamma_{lm},\gamma_{l'm'}] = 0 \end{split}$$

Simplified Hamiltonian

$$\hat{H}_{ECQF} = \varepsilon \hat{n}_d + \kappa \hat{Q} \cdot \hat{Q} + \kappa' \hat{L} \cdot \hat{L}$$

Model based on a u(6) spectrum generator algebra. It is especially suited for medium and heavy-mass nuclei. The number of bosons, *N*, corresponds the number of nucleons pairs, regardeless its proton, neutron, particle or hole nature.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided.

A different Hamiltonian, \hat{H}_{ECQF}^{N} and \hat{H}_{ECQF}^{N+2} , acts on the regular [N] and intruder [N+2] sectors, separately. The offset Δ^{N+2} and the mixing interaction $\hat{V}_{mix}^{N,N+2}$ should be provided. Macroscopic phase transitions

Examples of Macroscopic Phase Transitions

Liquid-gas

Second order phase transition. Paramagnetic-ferromagnetic

Φ in the Landau theory

 $\Phi = A(T,...)\beta^4 + B(T,...)\beta^2 + C(T,...)\beta$

Φ in the Landau theory

$$\Phi = A(T,...)\beta^4 + B(T,...)\beta^2 + C(T,...)\beta$$

What a Quantum Phase Transition (QPT) is?

A QPT appears when a quantum system experiences a sudden change in its structure (order parameter) when a parameter that affects the Hamiltonian (control parameter) slightly changes around its critical value. This transitions are assumed to occurs at zero temperature.

$$\hat{H}=(1-\xi)\hat{H}_1+\xi\hat{H}_2$$

Quantum Phase Transition					
0000000000					
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	

What a Quantum Phase Transition (QPT) is?

A QPT appears when a quantum system experiences a sudden change in its structure (order parameter) when a parameter that affects the Hamiltonian (control parameter) slightly changes around its critical value. This transitions are assumed to occurs at zero temperature.

 $\hat{H} = (1-\xi)\hat{H}_1 + \xi\hat{H}_2$

Quantum Phace Tra	sition			
000000000	0000000	000000000000000000000000000000000000000	000000	0000000
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup

At the critical point

- The ground state energy is non-analytical (in the thermodinamic limit).
- Energy gap between the ground and the first excited states goes to zero.

Challenges when dealing with QPTs in atomic nuclei

- It is a finite system, therefore abrupt changes, if any, are smoothed out.
- There is not a true control parameter.
- How can we define an order parameter?
- How can we define the phases of the system?
- The phase transition does not characterize a single nucleus, but it is a property of an entire region.

Low lying 0^+ states of an IBM calculation with N=20 between the U(5) and SU(3) limits.

Quantum Phase Tran	sition			
0000000000	00000000			
QPT vs SC	Kev indicators	The Zr and Sr case	Discussion and conclusions	Backup

At the critical point

- The ground state energy is non-analytical (in the thermodinamic limit).
- Energy gap between the ground and the first excited states goes to zero.

Challenges when dealing with QPTs in atomic nuclei

- It is a finite system, therefore abrupt changes, if any, are smoothed out.
- There is not a true control parameter.
- How can we define an order parameter?
- How can we define the phases of the system?
- The phase transition does not characterize a single nucleus, but it is a property of an entire region.

Low lying 0^+ states of an IBM calculation with N=20 between the U(5) and SU(3) limits.

 0000000000				0000000
00000000000	00000000	000000000000000000000000000000000000000	000000	0000000

At the critical point

- The ground state energy is non-analytical (in the thermodinamic limit).
- Energy gap between the ground and the first excited states goes to zero.

Challenges when dealing with QPTs in atomic nuclei

- It is a finite system, therefore abrupt changes, if any, are smoothed out.
- There is not a true control parameter.
- How can we define an order parameter?
- How can we define the phases of the system?
- The phase transition does not characterize a single nucleus, but it is a property of an entire region.

Gap

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
	0000000			
Designs to be sugl	a no d			

Regions of interest

Pb and Sn regions are ideal regions to study the importance of Shape Coexistence (SC).

Sm region is the paradigm of Quantum Phase Transition (QPT) region.

Zr region seems to be the ideal region to study the interplay between SC and QPT.

QPT vs SC	Key indicators ○●○○○○○○	The Zr and Sr case	Discussion and conclusions	Backup 000000000	
Shape coexistence indicators					
Shape co	existence				

Pb isotopes

Three families of states are present.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
	0000000			
Shape coexistence ind	licators			

Shape coexistence

Pb isotopes

Three families of states are present.

Hg isotopes

The presence of two families of states is self-evident.

QPT vs SC 0000000000	Key indicators ○0●00000	The Zr and Sr case	Discussion and conclusions	Backup 000000000		
Shape coexistence indicators						
Lead reg	Lead region					

Pt isotopes

In this case only a suspicious flat area appears at midshell.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
	0000000			
Shape coexistence in	dicators			

Lead region

Pt isotopes

In this case only a suspicious flat area appears at midshell.

Here, we hardly reach the midshell and no clear conclusions

can be obtained.

QPT vs SC 0000000000	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Shape coexistence inc	licators			

Unperturbed energies

Pt isotopes

The parabolic energy systematics is clear and the intruder configuration becomes the ground state.

CI	It as a second			
	0000000			
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup

• 0

Unperturbed energies

The parabolic energy systematics is clear and the intruder configuration becomes the ground state. The parabolic energy systematics is obvious, but the ground state always presents a regular nature.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
	0000000			
Change an evidence in	a di a ata wa			

Unperturbed energies

I he parabolic energy systematics is clear and the intruder configuration becomes the ground state. The parabolic energy systematics is obvious, but the ground state always presents a regular nature.

Intruder and regular configurations are almost degenerated at midshell.

QPT vs SC 0000000000	Key indicators ○000●○○○	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Shape coexistence in	ndicators			
Radii				

The three cases show a clear departure from the spherical trend.

QPT vs SC	Key indicators ○000●000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Shape coexistence	indicators			
Radii				

The three cases show a clear departure from the spherical trend.

QPT vs SC 0000000000	Key indicators ○○○○●○○○	The Zr and Sr case	Discussion and conclusions	Backup 000000000		
Shape coexistence indicators						
Radii						

The three cases show a clear departure from the spherical trend.

	00000000				
Quantum Phase Transition indicators					

Quantum Phase Transition indicators in the rare-earth region

Two-neutron separation energy. Why?

energy. Its discontinuity is a hint for the onset a first order QPT.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	
	00000000				
Quantum Phase Transition indicators					

Quantum Phase Transition indicators in the rare-earth region

Two-neutron separation energy. Why?

$E(4_1^+)/E(2_1^+)$

 $E(4_1^+)/E(2_1^+)$ can be used as an order parameter and, therefore, it is a key observable to find where a QPT develops.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup	
	00000000				
Quantum Phase Transition indicators					

Hints for QPTs in lead region?

Hints for QPTs in lead region?

$E(4_1^+)/E(2_1^+)$

 $E(4_1^+)/E(2_1^+)$ does not present neither the typical behaviour of an order parameter. Only Pt isotopes resemble the expected trend for an order parameter when approaching midshell from the left.
QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
Quantum Phase Tran	sition indicators			

Something in common?

- Rapid change in the structure of certain states, including the ground-state.
- Lowering of certain 0⁺ states.
- At the mean-field level several minima coexist.
- Onset of deformation: radii and isotopic shift.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	00000000	000000000000000000000000000000000000000	000000	000000000
Quantum Phase Tr	ansition indicators			

Something in common?

• Rapid change in the structure of certain states, including the ground-state.

nature

physics

- Lowering of certain 0⁺ states.
- At the mean-field level several minima coexist.
- Onset of deformation: radii and isotopic shift.

Characterization of the shape-staggering effect in mercury nuclei

https://doi.org/10.1038/s41567-018-0292-

B. A. Marsh[®]¹, T. Day Goodacre^{1,23}, S. Sel S^{®1}, Y. Tsunoda¹, B. Andel^{®1}, A. N. Andreyev², N. A. Althubit¹, D. Kanasov², A. E. Barzahd¹, J. Billowe³, K. Blaum¹, T. E. Coccilos^{2,3}, J. G. Cubiss^{9,4}, J. Dobaczewski⁶, G. J. Farooq-Smith¹³, D. V. Fedorov[®], Y. N. Fedosseev^{®1}, K. T. Fianagan², J. P. Gaffney^{®1,9}, L. Ghya³, M. Huyze³, S. Karion⁴, D. Lume⁹¹, K. M. Lynch¹, V. Manae³, Y. Martines⁹, B. Calcuss¹, P. L. Molkanov¹, T. Otkuka¹⁴-²⁰⁰⁰, A. Pastore⁴, M. Kosenbuch¹¹⁰, R. F. Sossel¹, S. Rothe³¹, L. Schweikhard¹⁰, M. D. Seliverstov¹, P. Spagnolett¹¹⁰, C. Van Beveren¹, P. Van Dupper¹, M. Veinhard¹, E. Verstraelen¹, A. Welke¹⁰, K. Wendt¹⁷, F. Wienholt¹², R. N. Wolf, P. Zackwaray³ and K. Zuber⁴

"The shape staggering effect manifests characteristic features of a quantum phase transition: in a given nucleus, different phases ... By making small changes in the control parameter, which in this case is the neutron number, the system alternates between the two phases..."

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Experimental evidences

Energy systematics for even-even Zr nuclei

Blue labels for spherical states while red labels for deformed ones.

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Experimental evidences

Energy systematics for even-even Sr nuclei

Blue labels for spherical states while red labels for deformed ones.

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Experimental evidences

Radii and two-neutron separation energies

- Radii show a shudden increase at N = 60 for Sr, Y and Zr, being almost smoothed out for Mo.
- S_{2n} present a similar trend that the observed one in rare-earth region, although, once more, the *discontinuity* is smoothed out for Mo.

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Experimental evidences

Radii and two-neutron separation energies

- Radii show a shudden increase at N = 60 for Sr, Y and Zr, being almost smoothed out for Mo.
- S_{2n} present a similar trend that the observed one in rare-earth region, although, once more, the *discontinuity* is smoothed out for Mo.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup			
		000 00000 00000000000					
Interacting Boson Mo	Interacting Boson Model calculations						

The fitting procedure

Energies

$$\begin{array}{c|c} \mbox{Error (keV)} & \mbox{States} \\ \hline \sigma = 1 & 2^+_1 \\ \sigma = 10 & 4^+_1, 0^+_2, 2^+_2, 4^+_2 \\ \sigma = 100 & 2^+_3, 2^+_4, 3^+_1, 4^+_3, 4^+_4 \end{array}$$

χ^2 test

The χ^2 function is defined in the standard way as

$$\chi^2 = rac{1}{N_{data} - N_{par}} \sum_{i=1}^{N_{data}} rac{(X_i(data) - X_i(IBM))^2}{\sigma_i^2},$$

We minimize the χ^2 function for each isotope separately using the package MINUIT which allows to minimize any multi-variable function.

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup		
		000000000000000000000000000000000000000				
Interacting Boson Model calculations						

The fitting procedure

The operators

$$\begin{aligned} \hat{H}_{\text{ecqf}}^{i} &= \varepsilon_{i} \hat{n}_{d} + \kappa_{i}' \hat{L} \cdot \hat{L} + \kappa_{i} \hat{Q}(\chi_{i}) \cdot \hat{Q}(\chi_{i}). \\ \hat{Q}_{\mu}(\chi_{i}) &= [s^{\dagger} \times \tilde{d} + d^{\dagger} \times s]_{\mu}^{(2)} + \chi_{i} [d^{\dagger} \times \tilde{d}]_{\mu}^{(2)}, \ \hat{T}(E2)_{i} = e_{i} \hat{Q}_{i}. \end{aligned}$$

The parameters (for Zr isotopes)

Nucleus	ε_N	κ_N	χN	κ'_N	ε_{N+2}	κ_{N+2}	χ_{N+2}	κ'_{N+2}	ω	Δ	e _N	e_{N+2}
⁹⁴ Zr	1201	-0.00	1.30	-39.93	0.1	-26.32	-2.35	21.97	150	3200	2.01	-1.36
⁹⁶ Zr	1800	-34.41	1.82	25.12	333.2	-29.18	0.09	-4.50	15	2000	0.90	3.35
⁹⁸ Zr	1044	-25.23	1.80	78.71	439.6	-14.32	0.67	26.48	15	814	1.55	3.11
¹⁰⁰ Zr	1063	-23.26	2.53	0.00	438.3	-28.76	-0.95	0.00	15	820	0.46	2.26
¹⁰² Zr	1050	-23.58	2.46	0.00	337.9	-32.01	-0.68	0.00	15	820	0.46	2.32
¹⁰⁴ Zr	1050	-23.58	2.46	0.00	616.5	-32.00	-1.35	0.00	15	820	0.46	2.32
¹⁰⁶ Zr	1050	-23.58	2.46	0.00	580.5	-31.03	-0.93	0.00	15	820	0.46	1.79
¹⁰⁸ Zr	1050	-23.58	2.46	0.00	540.2	-30.00	-0.90	0.00	15	820	0.46	1.81
¹¹⁰ Zr	1050	-23.58	2.46	0.00	498.9	-32.00	-0.90	0.00	15	820	0.46	1.81

All quantities have the dimension of energy (given in keV), except χ_N and χ_{N+2} , which are dimensionless and e_N

and e_{N+2} which are given in $\sqrt{W.u.}$

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Interacting Boson Model calculations

Comparing theory and experimental data

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Interacting Boson Model calculations

Comparing theory and experimental data

Energies (Sr case)

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Correlation energies (Zr case) • [N] 3 • [N+2] 2 E (MeV) Δ E(N) corr -1 -2 E(N+2) 98 100 102 104 106 108 110 94 96 A

The intruder configuration becomes the ground state for $\ensuremath{A}=100$ and onwards.

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

The intruder configuration becomes the ground state for $\ensuremath{A}\xspace = 100$ and onwards.

Correlation energies (Sr case)

The intruder configuration becomes the ground state for A = 98 and onwards.

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Intruder states present a *parabolic* behaviour while regular ones *flat*.

QPT vs SC 0000000000	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Intruder states present a *parabolic* behaviour while regular ones *flat*.

Unperturbed spectra (Sr case)

Intruder states present a *parabolic* behaviour while *flat* the regular ones.

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Wave function

Regular component and energy (Zr case)

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Wave function

Regular component and energy (Sr case)

QPT vs SC 0000000000	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				
Radii				

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				
Radii				

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Analysis				

Mean-field energy surfaces

Mean field energy surface shows up a rapid evolution from a spherical to a well deformed shape. $^{100}{\rm Zr}$ shows the coexistence of two minima.

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Analysis

Mean-field energy surfaces

Sr isotopes

Mean field energy surface shows up a rapid evolution from a spherical to a well deformed shape. ⁹⁸Sr shows the coexistence of two minima.

QP ⁻	Γvs	SC	

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Analysis

Hints pointing to a QPT

$E(4_1^+)/E(2_1^+)$ (Zr case)

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Analysis

Hints pointing to a QPT

Two-neutron separation energy (Zr case)

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Analysis

Hints pointing to a QPT

Analysis

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 000000000

Hints pointing to a QPT

Hints pointing to a QPT

QPT vs SC 0000000000	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Discussion				
<u> </u>				

Schematic view

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	00000000		○●○○○○	000000000
Discussion				

Competition of interactions

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Discussion				

A novel approach: Proxy-SU(3) symmetry

- Proposed in PRC 95, 064325 (2017), Eur. Phys. J. A 56, 239 (2020), Eur. Phys. J. A 57, 84 (2021), by Andriana Martinou, Dennis Bonatsos, I. E. Assimakis, K. Karakatsanis, et al.
- This mechanism is based on the interplay between the Harmonic Oscillator (HO) magic numbers and spin-orbit (SO) like magic numbers. The main element of the new mechanism are particle excitations occurring between the HO and SO sets of shells.
- According to this mechanism shape coexistence cannot appear everywhere on the nuclear chart, but only within specific regions, called islands of shape coexistence, the shores of which are determined through group theoretical arguments in a parameter independent way.
- The islands predicted by the present mechanism are fully compatible with the regions of the nuclear chart in which the particle-hole mechanism has been applied.

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Discussion				

Proxy-SU(3) symmetry

Rare-earth region. Neutron single particle orbitals energies relative to the Fermi energy obtained by a relativistic density functional. https://arxiv.org/abs/2204.00805

QPT vs SC 0000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Discussion				

Proxy-SU(3) symmetry

Zr region. Proton single particle orbitals energies relative to the Fermi energy obtained by a relativistic density functional. https://arxiv.org/abs/2204.00805

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	00000000		○○○○○●	000000000
Conclusions				

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations.
- Are both descriptions compatible? Maybe the answer is in Zr region.
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
0000000000	0000000	000000000000000000000000000000000000000	000000	000000000
Conclusions				

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations.
- Are both descriptions compatible? Maybe the answer is in Zr region.
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC 000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Conclusions				

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations.
- Are both descriptions compatible? Maybe the answer is in Zr region.
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC 000000000	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 000000000
Conclusions				

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations.
- Are both descriptions compatible? Maybe the answer is in Zr region.
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?
| QPT vs SC
000000000 | Key indicators
00000000 | The Zr and Sr case | Discussion and conclusions | Backup
000000000 |
|------------------------|----------------------------|--------------------|----------------------------|---------------------|
| Conclusions | | | | |

Conclusions or rather open questions

- Lead region clearly shows up the onset of shape coexistence. Large mixing and relative energies hinder the onset of a Quantum Phase Transition.
- Rare-earth region is the most clear cut example of *critical region*, but without clear influence of shape coexistence, although the SU3-proxy symmetry supports the presence of neutron particle-hole excitations.
- Are both descriptions compatible? Maybe the answer is in Zr region.
- Can a Quantum Phase Transition be described in terms of the onset of intruder configurations?
- Is shape coexistence always present *before* a Quantum Phase Transition sets in, or are they fully disconnected?

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
				0000000

Thanks for your attention

Backup 0●0000000

Some references of interest

- J.E. García-Ramos and K. Heyde, "The Pt isotopes: Comparing the Interacting Boson Model with configuration mixing and the extended consistent-Q formalism", Nuclear Physics A 825, 39-70 (2009).
- J.E. García-Ramos, V. Hellemans and K. Heyde, "The platinum nuclei: concealed configuration mixing and shape coexistence", Physical Review C 84, 014331-14 (2011).
- J.E. García-Ramos, V. Hellemans and K. Heyde, "Concealed Configuration Mixing and Shape Coexistence in the Platinum Nuclei", 2nd International Conference on Nuclear Structure and Dynamics, American Institute of Physics Conference Proceedings 1491, 109-112 (2012).
- J.E. García-Ramos and K. Heyde, "Nuclear shape coexistence: A study of the even-even Hg isotopes using the interacting boson model with configuration mixing", Physical Review C, 89, 014306-24pp (2014).
- J.E. García-Ramos and K. Heyde, "Disentangling the nuclear shape coexistence in even-even Hg isotopes using the interacting boson model", 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15), EPJ Web of Conferences 93, 01004-4 (2015).
- J.E. García-Ramos and K. Heyde, "Nuclear shape coexistence in Po isotopes: An interacting boson model study", Physical Review C 92, 034309-19pp (2015).
- J.E. García-Ramos and K. Heyde, "The influence of intruder states in even-even Po isotopes", Nuclear Structure and Dynamics '15, American Institute of Physics Conference Proceedings 1681, 040008-4 (2015).
- J.E. García-Ramos and K. Heyde, "On the nature of the shape coexistence and the quantum phase transition phenomena: lead region and Zr isotopes", 16th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS16), EPJ Web of Conferences 178, 05005 (2018).
- J.E. García-Ramos and K. Heyde, "The quest of shape coexistence in Zr isotopes: An interacting boson model study", Physical Review C 100, 044315-25p (2019).
- J.E. García-Ramos and K. Heyde, "Subtle connection between shape coexistence and quantum phase transition: The Zr case", Physical Review C 102, 054333-16p (2020).
- E. Maya-Barbecho and J.E. García-Ramos, "Shape coexistence in Sr isotopes", Physical Review C 105, 034341-16p (2022).

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup
				00000000

Comparing theory and experimental data

Wave function: U(5) decomposition

⁹⁴Zr, ⁹⁶Zr and ⁹⁸Zr

100 Zr, 102 Zr and 104 Zr

Deformation from quadrupole shape invariants

Value of β extracted from the quadrupole moment, $\beta = \frac{4 \pi \sqrt{q_2}}{3 Z e r_0^2 A^{2/3}}$.

QPT vs SC 0000000000	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 00000●000

Wave function

Overlap with the intermediate basis: first state

QPT vs SC	Key indicators	The Zr and Sr case	Discussion and conclusions	Backup 000000●00

Wave function

Overlap with the intermediate basis: second state

QPT vs SC	Key indicators 00000000	The Zr and Sr case	Discussion and conclusions	Backup 0000000●0

Wave function

Regular component

$$\begin{split} \Psi(k,JM) &= \sum_{i} a_i^k(J;N)\psi((sd)_i^N;JM) + \sum_{j} b_j^k(J;N+2)\psi((sd)_j^{N+2};JM) \text{ and } \\ w^k(J,N) &\equiv \sum_{i} \mid a_i^k(J;N) \mid^2. \end{split}$$

QPT vs SC

Key indicators

The Zr and Sr case

Discussion and conclusions

Backup 00000000

QPT plus configuration mixing

2 conf. plus QPT 1 conf. plus QPT

Two configurations: $\varepsilon_N = 1, \ \varepsilon_{N+2} = x,$ $\kappa_{N+2} = \frac{x-1}{N+2},$ $\chi = -\sqrt{7}/2$, $\omega_0^{N,N+2} = \omega_2^{N,N+2} = 0.02,$ and $\Delta^{N+2} = 0.75$. N = 18 (N + 2 = 20)Single configuration: $\varepsilon = x, \ \kappa = \frac{x-1}{N},$ $\chi = -\sqrt{7}/2$. N = 20.