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1-a Proton elastic scattering of light nuclei I

The system of the elastic scattering can be approximated by
considering the complex optical model potential.

In the phenomenological approach, a suitable analytical forms
as a Woods-Saxon or Gaussian forms are used with free
parameters which are adjusted to best fit with available
experimental data.

In microscopic approach, as the folding model, the
nucleon-nucleon interaction and the matter distributions of
the colliding nuclei are considered.

For weakly bound nuclei, the folding potential requires a
normalization to fit the data indicating to the breakup effect.
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Proton elastic scattering of light nuclei I

The most important goals of the present work are:

To use a minimal number of fitting parameters in the OP.

To determine the energy dependencies of the OP.

To present an energy-dependent local microscopic OP which
can be used to predict the data at energies where no
experimental data are available.

The proton elastic scattering data of the light nuclei, 4,6,8He,
6,7,9,11Li, and 9,10,11,12Be, in the range of few MeVs/nucleon
to 200 MeV/nucleon is studied.

The cross-section data are calculated by the optical model
analysis with partial-wave expansion method.

The OP is constructed only from the single-folding model and
its derivative
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Proton elastic scattering of light nuclei II

dσ/dΩ and Ay (θ) data for proton elastic scattering of helium,
lithium, and beryllium isotopes from 1964 to 2013.

Data Scattering Incident energy (MeV/nucleon)

dσ/dΩ p+4He 12.04, 17.45, 31.0, 40, 45, 64.9, 71.9, 85, and 156
6He+p 25.1, 38.3, 40.9, 41.6, and 71
8He+p 15.7, 26.1, 32, 66, and 72
p+6Li 6.0, 10.0, 25.9, 29.9, 35, 40.1, 45.4, 49.75, 65, 72, 135, 155, and 200.4
p+7Li 6.15, 10.3, 24.4, 49.74, 65, 155, and 200.4

9,11Li+p 60 for 9Li+p; 62, 68.4, and 75 for 11Li+p
p+9Be 3, 6, 10, 13, 30.3, 17, 25, 35.2, 49.4, 54.7, 74.7, 100.6, 160, 179.9, and 201.4
10Be+p 6, 9, 12, 15, 39.1, and 59.3

11,12Be+p 38.4 and 49.3 for 11Be+p and 55 for 12Be+p.

Ay (θ) p+4He 8.5, 14.5, 45, 52.3, 59.6, 64.9, and 71.9
6,8He+p 71 for 6He+p and 72 for 8He+p
p+6Li 10, 14.5, 65, 72
p+7Li 14.5, 65
p+9Be 8.5, 11.4, 13, 17.8, 30.3, 42, 74.7, 100.6
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Total optical potential I

The total optical potential UOP(r) can be generally written as

UOP(r) = VN(r) + VSO(r)L.S + VC (r), (1)

where VN(r) = V (r) + iW (r) is the complex nuclear
potential, VSO is the spin-orbit potential, and VC (r) is the
Coulomb potential of a uniformly charged sphere.

The phenomenological optical potential is taken in the
popular Woods-Saxon form:

UOP(r) = VC (r)− V0f0(r) − iWv fv (r) + 4iasWs
d

dr
fs(r)

+ 2λ2πVso
1

r

d

dr
fso(r), (2)

5/44



Total optical potential II

where fx(r) =
[
1 + exp

(
r−Rx
ax

)]−1
, Rx = rxA

1/3, with A

being the atomic mass number, and λ2π =
(

~
mπc

)2
≈ 2 fm2.

The subscripts x = 0, v , s, and so denote the central real,
volume imaginary, surface imaginary, and spin-orbit,
respectively. V0,Wv (Ws) and Vso are the strengths.

In this work, the microscopic OP can be written as

UOP(r) = NRVF (r) + i [NIVWF (r)− NISr
d

dr
WF (r)]

−2λ2πNSO
1

r

d

dr
VF (r)L.S. (3)

Renormalization factors are introduced to fit the data.

The fitting procedure is carried out by:
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Total optical potential III

simultaneously adjustment of the renormalization factors of
the OP to fit the cross-section data.
is done by achieving a minimum χ2

χ2 =
1

N

N∑
k=1

[
σth(θk)− σex(θk)

∆σex(θk)

]2
, (4)

the single-folding potential VF (r) is given by

VF (r) =

∫
ρ(́r)νnn(s)d ŕ,

=
1

(2π)3

∫
dqe−iq.rρ̃(q)ν̃nn(q), (5)

where s = |r− ŕ|, is the distance between the two nucleons,
ρ(́r) is the density of the nucleus at r , and νnn(s) is the
effective NN interaction between two nucleons.
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Total optical potential IV

The parameterized form of the density-independent M3Y-Reid
interaction is

νnn(s) = 7999
e(−4s)

4s
− 2134

e(−2.5s)

2.5s
− 276(1− 0.005E/A)δ(s),

(6)
where the last term is the zero-range pseudopotential.

The microscopic densities: large-scale shell model (LSSM and
Green’s function Monte Carlo GFMC) are used.

Also, the imaginary part W within folding model as

WF (r) =
1

(2π)3

∫
dqe−iq.rρ̃(q)w̃nn(q), (7)

where

w̃nn(q) =
~v
2
σ̄NN fNN(q), (8)
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Total optical potential V

where v is the velocity of the nucleon-nucleus relative
motion, ρ(q) is the form factor corresponding to the point like
nucleon density distribution of the nucleus, and

fNN(q) = exp(−q2r20 /4) is the amplitude of the NN

scattering and r20 = 0.439 fm2 is the range parameter. σ̄NN is
the averaged over isospin total NN cross section. It has been
parameterized as a function of energy.
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1-b Local E-dependent microscopic nucleon-nucleus OP I

There are three methods commonly used to set the
parameterization of the OP:

1 A best-fit OP: representing a potential for one reaction at one
single incident energy.

2 a local OP: representing a potential for one reaction and an
energy region.

3 a global OP: in which a potential is specified for both a mass
region and an energy region

We present a local E-dependent microscopic OP with
parameterized N-factors to reproduce the cross-section data
for the nucleon-nucleus scattering of p+4,6,8He, p+6,7Li, and
p+9,10Be at energy range from few MeVs/nucleon up to 200
MeV/nucleon.
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Local E-dependent microscopic nucleon-nucleus OP I

To initialize this E-dependent OP, the following steps are done:

First, the fitting procedure is carried out to fit dσ/dΩ, Ay (θ),
and σR data using the best-fit microscopic OP

UOP(r) = NRVF (r) + i [NIVWF (r)− NISr
d

dr
WF (r)]

−2λ2πNSO
1

r

d

dr
VF (r)L.S. (9)

Second, the volume integrals of the best-fit OP are calculated

J(U) =
4π

A

∫
U(r)r2dr . (10)

JR =
4π

A

∫
[NRVF (r)]r2dr . (11)
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Local E-dependent microscopic nucleon-nucleus OP II

JI = JIV + JIS =
4π

A

∫
[NIVWF (r)− NISr

d

dr
WF (r)]r2dr .

(12)

JSO =
4π

A

∫
[−2λ2πNSO

1

r

d

dr
VF (r)]r2dr . (13)

where JIV and JIS are the volume integral of the volume and
surface imaginary potentials.

Third, the calculated volume integrals of the best-fit OP are
plotted and parameterized as functions in energies
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Local E-dependent microscopic nucleon-nucleus OP III
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Local E-dependent microscopic nucleon-nucleus OP IV

These calculated volume integrals are parameterized as follow:

JR(E ) =

{
JR0/(1 + ηE ) if E ≥ ER ,
JR1 exp[−(E − ER)2/w2

R ] if E ≤ ER
(14)

JSO(E ) =

{
JS0 exp(−E/γ) if E ≥ ESO,
JS1 exp[−(E − ESO)2/w2

SO] if E ≤ ESO

(15)
with JR1 = JR0/(1 + ηER) and JS1 = JS0 exp(−ESO/γ). In

some cases no data at low energies, so ER and ESO cannot be
determined. So, we consider the first line in the equation for
JR(E ) and JSO(E ) for all energies.

JI (E ) = (JI0 − αIE )
(E − EF )4

(E − EF )4 + β4I
, (16)
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Local E-dependent microscopic nucleon-nucleus OP V

JIV(E ) = (JI0 − αIE )
(E − EF )4

(E − EF )4 + β4IV
(17)

JIS(E ) = JI (E )− JIV(E ) = JI (E )
β4IV − β4I

(E − EF )4 + β4IV
. (18)

If the imaginary OP is volume only, then βIV = βI .

The parameters of the volume integral parameterizations are:

Nucleus EF ER wR JR0 η JI0 αI βI βIV ESO wSO JS0 γ
MeV MeV MeV MeV fm3 MeV−1 MeV fm3 MeV−1 MeV MeV MeV MeV MeV fm3 MeV−1

4He -8.92 694.4 0.0094 293.3 0.386 61.0 61.0 62.9 108.6
6He -16.28 25 16.6 595.2 0.0128 334.1 0.401 20.1 72.1 434.1 23.7
8He -19.13 30 23.1 628.9 0.0111 306.1 0.861 28.6 91.1 1342.8 10.6
6Li -5.10 737.1 0.0180 267.0 0.423 14.6 14.6 10 5.7 190.2 41.4
7Li -13.62 746.6 0.0173 223.4 0.118 23.1 23.1 20 20.1 417.0 29.4
9Be -11.74 17 25.5 841.7 0.0222 260.2 0.354 19.1 35.9 111.3 44.0
10Be -15.43 714.5 0.0153 215.1 0.490 18.6 43.2 72.9 56.7

15/44



Local E-dependent microscopic nucleon-nucleus OP VI

Finally, the local E-dependent microscopic OP for
nucleon-nucleus scattering can be defined as

UOP(r ,E ) = NR(E )VF (r) + i [NI (E )WF (r)− NIS(E )r
d

dr
WF (r)]

−2λ2πNSO(E )
1

r

d

dr
VF (r)L.S.(19)

where the parameterized N-factors are defined as:

NR(E ) =
JR(E )

J(VF )

NIV(E ) =
JIV(E )

J(WF )

NIS(E ) =
JIS(E )

J(rdWF (r)/dr)

NSO(E ) =
JSO(E )

J(2λ2π
1
r
d
drVF (r))

. (20)
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Local E-dependent microscopic nucleon-nucleus OP VII

This local OP is applied to analyze the proton elastic scattering of
4,6,8He, 6,7Li, and 9,10Be nuclei at a wide range of energy from few
MeVs/nucleon up to 200 MeV/nucleon.
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Local E-dependent microscopic nucleon-nucleus OP VIII

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 01 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

( a ) 4 0 . 1  M e V

3 5  M e V

2 9 . 9  M e V

2 5 . 9  M e V

1 0  M e V

6  M e V
    p + 6 L i

 ds
/dW

 (m
b/s

r)

 q c . m .  ( d e g ) 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 01 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

( b )

2 0 0 . 4  M e V 1 5 5  M e V

1 3 5  M e V
7 2  M e V

6 5  M e V
4 9 . 7 5  M e V

4 5 . 4  M e V

  p + 6 L i

 ds
/dW

 (m
b/s

r)

 q c . m .  ( d e g ) 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 01 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

( c )

2 0 0 . 4  M e V

1 5 5  M e V 6 5  M e V

4 9 . 6 5  M e V

2 4 . 4  M e V

1 0 . 3  M e V

6 . 1 5  M e V
p + 7 L i

 ds
/dW

 (m
b/s

r)

 q c . m .  ( d e g )

18/44



Local E-dependent microscopic nucleon-nucleus OP IX
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Local E-dependent microscopic nucleon-nucleus OP X
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1-c Comparing between OM and Eikonal approximation I

In this work

A comparing between partial wave expansion and eikonal
approximation is done for p+9Be at energies larger than 50
MeV/nucleon.

For energies larger than 100 MeV/nucleon, more than one
minima are appear in the differential cross-section data using
the optical model with the partial-wave expansion method.

At these energies, the wave function will oscillate rapidly, so,
we use the eikonal approximation that based on the Glauber
theory with the same OP instead of the partial-wave
expansion method.
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Comparing between OM and Eikonal approximation I
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OM and eikonal approximation formalism I

The present scattering problem considers a proton with an energy
ELab and spin s = 1/2 incident upon a target with mass number
A. It is scattered by a central spherical optical potential
U = UOP(r) that satisfy the optical Schrödinger equation as

−~2

2µ
∇2ψ + Uψ = Eψ (21)

where µ is the reduced mass of the pair, E = ~2k2/2µ is the
center of mass energy of relative motion, and ψ is the stationary
scattering wave function, it has to be a sum of a plane wave and of
an outgoing spherical wave and satisfies the boundary condition

ψ(r) = e ikz + f (θ)
e ikr

r
(22)
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OM and eikonal approximation formalism II

Optical model with Partial-wave expansion

In terms of partial-wave radial functions y`(r), the complete wave
function can be expanded as

ψ(r) =
1

kr

∞∑
`=1

(2`+ 1)i `y`(r)P`(cos(θ)) (23)

where P`(cos(θ)) are Lagender functions. In the partial-wave
expansion method, if the incident beam is unpolarized, the
differential elastic cross section is given by

dσ

dΩ
= |f (θ)|2 (24)
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OM and eikonal approximation formalism III

and if the beam is polarized

dσ

dΩ
= |A(θ) + B(θ)|2 (25)

and the polarization vector of the scattered beam along the
direction n which perpendicular to the scattering plane is

P(θ) = P(θ)n =
A∗(θ)B(θ) + A(θ)B∗(θ)

|A(θ) + B(θ)|2
n (26)

where

A(θ) = fC (θ) +
1

2ik

∞∑
`=0

e2iσ` [(`+ 1)(S`,`+1/2 − 1)

+l(S`,`−1/2 − 1)]P`(cos(θ)) (27)
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OM and eikonal approximation formalism IV

where the right-hand term in brackets is absent for ` = 0, the sum
on the right is the nuclear phase shift. B(θ) is the spin-flip
amplitude and it is given by

B(θ) = − 1

2k

∞∑
`=0

e2iσ`(S`,`+1/2 − S`,`−1/2)P`l (cos(θ)) (28)

The coulomb scattering amplitude is given by

fC (θ) =
−η

2k sin2(θ/2)
exp[−iη ln(sin2(θ/2) + 2iσ0)] (29)

where S`j = e2iδ`j is the reflection coefficient and δ`j is the phase
shift due to the nuclear and spin-orbit potentials.
σ` = argΓ(`+ 1 + iη) is Coulomb phase shift where
η = µZe2/(~2k) is the Coulomb or Sommerfeld parameter.
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OM and eikonal approximation formalism V

The reaction cross section is given by

σR =
π

k2(2s + 1)

∞∑
`=0

j=`+s∑
j=|`−s|

(2j + 1)(1− |S`j |2) (30)

The eikonal approximation

At high energies, the wave function will oscillate rapidly and the
calculation of scattering wave functions for each partial wave
becomes more complicated. In the eikonal approximation and the
optical limit of the Glauber theory, the wave function can be
written as

ψ = e ikz ψ̂ = exp[ikz +
1

i~v

∫ z

−∞
U(x , y , ź)dź ] (31)
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OM and eikonal approximation formalism VI

In the eikonal approximation a straight-line trajectory is assumed.
The vector r is given by r = b + zẑ where b = (x , y , 0) is called
the impact parameter vector. The correspondence between the
quantum-mechanical and classical angular momenta, `+ 1/2 = kb,
is well-known, and it is therefore reasonable to replace the sum
over angular momentum ` by the integral k

∫
db. So the total

nuclear reaction cross section is given by

σR = 2π

∫ ∞
0

[1− e2ImχN(b)]bdb (32)

and the elastic differential cross sections as

dσ

dΩ
= |F (θ) + G (θ)|2 (33)
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OM and eikonal approximation formalism VII

where

F (θ) = fC (θ) + ik

∫ ∞
0

J0(qb)e iχC (b)

×{1− e iχ(b) cos[kb χSO(b)]}bdb (34)

and

G (θ) = ik

∫ ∞
0

J1(qb)e iχC (b)+iχ(b) sin[kb χSO(b)]bdb (35)

In the equation above, q = 2ksin(θ/2) where θ is the scattering
angle. J0(J1) is the zero (first) order Bessel function. χ = χN +χC

where χN(b), χC (b), and χSO(b) are the nuclear, Coulomb, and
spin phase shift respectively and they can be given by

χτ (b) =
−1

~υ

∫ ∞
−∞

Vτ (
√

b2 + z2)dz , τ ≡ N,C ,SO (36)
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Conclusions I

Microscopic study of proton elastic scattering with helium,
lithium, and beryllium isotopes at a wide range of energies
start from few MeVs/nucleon up to 200 MeV/nucleon.

The cross-section data are calculated within:
1 The optical model with the partial-wave expansion method.
2 The eikonal approximation that based on the Glauber theory.

The optical potentials is constructed microscopically from the
zero-range single-folding model.

The partial-wave expansion calculation successfully reproduces
the scattering observables below 100 MeV.

At larger energies, some minima appear in dσ/dΩ and it is
resolved by using he eikonal approximation.

From the parametrization of the calculated volume integrals, a
local E-dependent OP is obtained with no fitting parameters.
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Conclusions II

This parameterized OP successfully reproduces the scattering
data and can be used for energies at which no data are exist.

Study of more data for intermediate and heavy nuclei can lead
to get a global microscopic OP.
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2- Extension of the work to 1 GeV I

Improvements

The spin-orbit OP the derivative of the folding potential ⇒ the
microscopic complex spin-orbit OP is taken within
Breiva-Rook approximation using spin-orbit NN
interaction.

The single-folding potential zero-range ⇒ finite-range exchange
part.

NN interaction density-dependent ⇒ the energy-, density-, and
isospin-dependent M3Y-paris NN interaction.

Energy range below 200 MeV ⇒ until 1000 MeV.

The data of the elastic scattering of protons with 9Be at
3-1000 MeV/nucleon are analysed using the optical model
with the partial-wave expansion technique.
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2- Extension of the work to 1 GeV II

Data Scattering Incident energy (MeV/nucleon)

dσ/dΩ p+9Be 3, 6, 10, 13, 30.3, 17, 25, 35.2, 49.4, 54.7, 74.7, 100.6,
135, 160, 179.9, 201.4, 220, 317, 497.5, 1000

Ay (θ) p+9Be 8.5, 11.4, 13, 17.8, 30.3, 42, 50, 74.7, 100.6
141.5 179.9, 201.4, 220, 317, 497.5, 990

Goals of the study:
1 To study the surface contribution at high energies
2 To determine the energy dependencies of the OP at a wide

range of energy.
3 To present an E-dependent local microscopic OP which can be

used to predict the data at energies where no experimental
data are available.

4 To test the ability of the folding-model OP with the
partial-wave expansion method at high energies.
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The microscopic optical potential I

The total microscopic optical potential can be rewritten as

UOP(r) = NRVF (r) + i [NIWF (r)− NISr
d

dr
WF (r)]

+(NR
SO + iN I

SO)VLS(r)L.σ + VC (r), (37)

VF is presented in terms of isoscalar (VIS) and isovector (VIV)
parts. Each term has direct and exchange parts.

VF(r) = VD(r) + V EX(r) = VD
IS(r) + VD

IV(r) + V EX
IS (r) + V EX

IV (r).

(38)

VD
IS(IV)(r) =

∫
[ρp(r′)± ρn(r′)]vD00(01)(ρ,E , s)d3r ′

V EX
IS(IV)(r) =

∫
[ρp(r, r′)± ρn(r, r′)]vEX00(01)(ρ,E , s)j0(k(E , r)s)d3r ′.(39)
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The microscopic optical potential II

where s = r′ − r, r is the vector joining the center-of-mass of
the target and the incident proton, ρp(n)(r, r

′) is the one-body
density matrix for the protons(neutrons) in the target nucleus
with ρp(n)(r) ≡ ρp(n)(r, r). k(E , r) is the local momentum of
the relative motion determined as
k2(E , r) = 2µ

~2 [Ec.m. − VF(r)− VC(r)] where, µ is the nucleon
reduced mass, Ec.m. is the center-of-mass energy.

To fulfill the saturation of nuclear matter, we use the energy-
and density-dependent CDM3Y6 effective Paris interaction as

vD(EX)(ρ,E , s) = g(E )F (ρ)vD(EX)(s) (40)

g(E ) = 1− 0.003E , and F (ρ) = C
[
1 + αe−βρ(r) − γρ(r)

]
,

(41)
the GFMC density that based on AV18+IL2 model is used
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The microscopic optical potential III

The spin-orbit part of the nucleon-nucleus optical potential
VLS(r)(L.σ) can be evaluated microscopically within Brieva and
Rook approximation using the two-body spin-orbit term of
M3Y-Paris NN interaction and the nuclear density of the target as

VLS(r) = −F (ρ(r))

3

×
[

Φp(E , r)
1

r

dρp(r)

dr
+ Φn(E , r)

1

r

dρn(r)

dr

]
, (42)

Φp(E , r) =

∫ ∞
0

v
(1)
LS (s)[1 + ĵ1(k(E , r)s)]s4ds,

Φn(E , r) =
1

2

∫ ∞
0
{v (1)LS (s)[1 + ĵ1(k(E , r)s)]

+ v
(0)
LS (s)[1− ĵ1(k(E , r)s)]}s4ds. (43)
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Results I
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Results II
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Energy dependence of the volume integrals I
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Energy dependence of the volume integrals II
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Energy dependence of the volume integrals III

Table: Energy parametrizations of the volume integrals of best-fit
potentials. The parameters E and w are given in MeV, η in MeV−1, and
J in MeV fm3.

OP part Parametrization Parameters

Real JR(E ) =

{
J
(1)
R exp[−(E − ER)2/w2

R ] for E ≤ ER

J
(2)
R exp (−ηRE ) for E ≥ ER


J
(1)
R = 624.0 wR = 22.12

ER = 13

J
(2)
R = 721.3 ηR = 0.0107

Volume Imaginary JIV (E ) =


J
(1)
IV − η

(1)
IV E

1 + exp (EIV − E )/wIV
for E ≤ 200MeV

J
(2)
IV + η

(2)
IV E for E ≥ 200MeV .


J
(1)
IV = 76.7 η

(1)
IV = 0.0977

EIV = 12.5 wIV = −1.84

J
(2)
IV = 28.4 η

(2)
IV = 0.1663

Surface Imaginary JIS(E ) =


J
(1)
IS − η

(1)
IS E

1 + exp (EIS − E )/wIS
for E ≤ 200MeV

J
(2)
IS + η

(2)
IS E for E ≥ 200MeV .


J
(1)
IS = 150.0 η

(1)
IS = 0.1960

EIS = 5.33 wIS = −0.94

J
(2)
IS = 80.2 η

(2)
IS = 0.2155

Real Spin-orbit JRSO(E ) =

{
J
(R1)
SO exp[−(E − ER

SO)2/wR
SO

2
] for E ≤ ER

SO

A + J
(R2)
SO exp (−ηRSOE ) for E ≥ ER

SO


ER
SO = 6 wR

SO = 5.62

J
(R1)
SO = 81.1 ηRSO = 0.0407

J
(R2)
SO = 58.7 A = 18.7

Imaginary Spin-orbit J ISO(E ) =

0 for E ≤ 50MeV

J ISO
E2

E2+w I
SO

2 for E ≥ 50MeV .

{
J
(I )
SO = −19.2 w I

SO = 365
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Local E-dependent microscopic nucleon-nucleus OP I

UOP(r ,E ) = NR(E )VF (r) + i [NI (E )WF (r)

−NIS(E )r
d

dr
WF (r)]

+[NR
SO(E ) + iN I

SO(E )]VLS(r)L.σ + VC (r), (44)

UOP(r ,E ) =
JR(E )

J(VF )
VF (r) + i

JIV(E )

J(WF )
WF (r)

−i JIS(E )

J(−rdWF/dr)
r
d

dr
WF (r)

+

[
JRSO(E )

J(VLS)
+ i

J ISO(E )

J(VLS)

]
VLS(r)L.σ. (45)
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Conclusions

The partial-wave expansion analysis fails to reproduce dσ/dΩ
data at energies larger than 100 MeV.

A good improvement is obtained by including the surface
imaginary contribution at high energies where most of the
basic scattering observables (dσ/dΩ, Ay and σR) are
reproduced well at the considered wide energy range.

The volume integrals parameterizations are used to build an
energy-dependent microscopic OP that used to reproduce the
observables at a wide energy range until 1 GeV.

This study shows that the partial-wave expansion analysis
using the folding optical model can be used to analyse the
scattering data at high energies as well as at low energies.
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The end

Thank you
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