

Underground nuclear astrophysics and the study of $^{22}Ne(\alpha,\gamma)$ ^{26}Mg and $^{20}Ne(p,\gamma)$ ^{21}Na reactions at LUNA

22 October 2020 - Phys Dept. of Warsaw University

Eliana Masha Università degli studi di Milano

Nuclear Astrophysics

- Stars are powered by nuclear reactions
- Among the key parameters (chemical composition, opacity, ...) to model stars, reaction cross sections play an important role
- They determine the origin of the elements in the cosmos, stellar evolution and dynamic

High precision data are needed!!!

Abundance relative to 10⁶ Si

The origin of the elements

Nuclear Astrophysics ambitious task is to explain the <u>origin</u> and relative <u>abundance</u> of the elements in the Universe

Gamow peak

Sun:

kT = 1 keV $E_c \approx 0.5-2$ MeV $E_0 \approx 5-30$ keV for reactions of H burning

$$\sigma(E) = \frac{1}{E} \exp(-31.29Z_1Z_2\sqrt{\mu/E})S(E)$$
Astrophysical S-factor

 $R_{lab} = 1-10 \text{ counts/day}$

LNGS (1400 m rock shielding = 4000 m w.e.)

E. Masha LUNA 50kV - Past

- ➤ Activity: 1991 2001
- ➢ Home-made accelerator
- \succ H⁺ and He⁺ beams

pp-chain:

 \square ²H (p, γ)³He

 $\square ^{3}\text{He}(^{3}\text{He},2p)^{4}\text{He}$ 2 events/month

Underground nuclear astrophysics and the study of 22 Ne(α , γ) 26 Mg and 20 Ne(p, γ) 21 Na reactions at LUNA - 22 October 2020

E. Masha LUNA 400kV - Present

Underground nuclear astrophysics and the study of ²²Ne(α , γ) ²⁶Mg and ²⁰Ne(p, γ) ²¹Na reactions at LUNA - 22 October 2020

Activity: 2001 –

Big Bang nucleosynthesis: ${}^{2}H(\alpha, \gamma){}^{6}Li$ ${}^{2}H(p, \gamma){}^{3}He$ ${}^{6}Li(p, \gamma){}^{7}Be$

Hydrogen burning in the Sun: ¹⁴N(p,g)¹⁵O

Hydrogen burning in massive stars: ¹⁵N(p, r)¹⁶O ²²Ne(p, r)²³Na ²³Na(p, r)²⁴Mg ²⁵Mg(p, r)²⁶Al ¹⁷O(p, r)¹⁸F ¹⁷O(p, α)¹⁴N ¹⁸O(p, r)¹⁹F ¹⁸O(p,a)¹⁵N

Helium burning: ${}^{13}C(\alpha,n){}^{16}O = {}^{22}Ne(\alpha,\tau){}^{26}Mg$

Ongoing: ${}^{12}C/{}^{13}C(p, \gamma){}^{13}N/{}^{14}N$ **{}^{20}Ne(p, \gamma){}^{21}Na**

²²Ne produced via ${}^{14}N(\alpha,\gamma){}^{18}F(\beta^+\nu){}^{18}O(\alpha,\gamma){}^{22}Ne$

The ²²Ne($\alpha \gamma$)²⁶Mg (Q_{val} = 10.6 MeV) competes with ²²Ne(αn)²⁵Mg (Q_{val} = -478 keV)

Source of neutrons for s-process in:

- □ Intermediate AGB stars (T ≥ 2.5 · 10^8 K → Unstable intershell Heburning)
- □ massive stars (T ≥ 3 10⁸ K and T ~ 10⁹ K → C ore H e and C burning)

≥ ²²Ne(α_{N})²⁶Mg reaction affects the production of isotopes ²⁵Mg – ³¹P in intermediate mass AGB stars (Karakas et al. 2006).

²²Ne(α, τ)²⁶Mg reaction – State of the art

In the energy range (temperature) when the ²²Ne becomes efficient the thermonuclear reaction rate dominated is dominated by the **395keV resonance**.

NO DIRECT MEASUREMENTS!

6 ORDERS OF MAGNITUDE!!!

²²Ne(α, γ)²⁶Mg reaction – Experimental setup

$$\begin{split} & \text{E}_{\text{beam}} \approx 50-400 \text{ keV} \\ & \text{I}_{\text{max}} \approx 250 \ \mu\text{A} \quad \text{alphas} \\ & \text{Long term stability} \approx 5\text{eV/h} \end{split}$$

Differentially pumped windowless gas target 99.9% enriched ²²Ne gas at 1 mbar

Two different campaigns:

Phase I - Summer 2016
Phase II - May - August 2019

$^{22}Ne(\alpha, \tau)^{26}Mg$ reaction – Experimental setup (Phase I)

Calorimetric measurement of the beam intensity, I_{beam}:

$$I_{beam} = \frac{W_0 - W_{run}}{E_{beam} - \Delta E}$$

- High efficiency detector
 - 6 BGO crystals, $\Omega^{\sim}4\pi$
 - Optically independent
 - Addback spectrum offline
 - ~40% efficiency

Ferraro et al., EPJA, 2018

²²Ne(α, τ)²⁶Mg reaction – Experimental setup

- Improved setup (Phase II)
- 10 cm thick shield of borated polyethylene→ reduce neutron background
- Increase BIB statistics

395 keV $\alpha\text{-beam}$ on Argon gas at 0.468 mbar

Low signal in the ROI

Precise knowledge of:

- ✓ Laboratory background
- ✓ Beam induced background

²²Ne(α, **v**)²⁶Mg reaction – Experimental setup

Total second campaign statistics on resonance

There is no evidence of signal in the ROI \rightarrow N < LC (95% confidence level)

Upper limit calculation

²²Ne(α,τ)²⁶Mg reaction – Experimental setup

$^{22}Ne(\alpha,\tau)/^{22}Ne(\alpha,n)$ reaction rate ratio

Present ${}^{22}Ne(\alpha, \mathbf{r}){}^{26}Mg$ reaction rate based on results of Phase II

Investigation of the astrophysical impact on the production of ²⁵Mg and ²⁶Mg ongoing! Calculation of the temperature and abundance evolution of TP-AGBs using PARSEC-COLIBRI code (P. Marigo et al. 2013) $M_i = 5M_{\odot}$ Solar-like metallicity Z = 0.014

 ${}^{20}Ne(p,\gamma){}^{21}Na$ (Q = 2431.6 keV) is the slowest reaction of the NeNa cycle and governs the velocity of the entire cycle. It affects the production of all neon isotopes.

NeNa cycle

- Advanced H-burning cycle
- Not important for energy production
- Cruciar role for production of isotopes Ne Al

 22 Ne(p, γ) 23 Na reaction already studied at LUNA

Astrophysical scenarios:

- Red Giant Branch stars
- Asymptotic Giant Branch stars
- Novae
- Massive stars

Underground nuclear astrophysics and the study of ²²Ne(α , γ) ²⁶Mg and ²⁰Ne(p, γ) ²¹Na reactions at LUNA - 22 October 2020

²⁰Ne(p,**v**)²¹Na reaction – 366 keV resonance

Measurement plan:

- First campaign: study of the 366 keV resonance (Ongoing)
- Second campaign: direct capture cross section E < 400 keV

$$\begin{split} E_{\rm X} &= 2797.9 \pm 0.5 \text{ keV} \\ E_{\rm CM_res} &= 366.2 \pm 0.5 \text{ keV} \\ \text{FWHM} &= 0.035 \text{ eV} \ (\text{T}_{1/2} = 13 \text{ fs}) \end{split}$$

	Branchings	
Transition [keV]	Rolfs et al., 1975	Cooper (PhD thesis, 2019)
R-> 2425	56 ± 4	61.5 ± 7.3
R-> 332	11 ± 4	1.6 ± 1.1
R -> 0	33 ± 4	35.9 ± 5.3

 $\omega \gamma_{\text{Rolfs}} = (0.11 \pm 0.02) \text{ meV}$

 $\omega \gamma_{\text{Cooper}} = (0.07 \underline{2} \pm 0.0068) \text{ meV}$

²⁰Ne(p,v)²¹Na reaction – Experimental setup

Laboratory Background with and without lead shielding

Calorimeter calibration

²⁰Ne(p,**v**)²¹Na reaction – 366 keV resonance

Efficiency

Calibrated radioactive sources: 60 Co, 137 Cs and the 278 keV resonance of the 14 N(p,y) 15 O reaction to determine γ - detection efficiency.

First measurement at E_p =395 keV in 2mbar natural neon gas.

Underground nuclear astrophysics and the study of 22 Ne(α , γ) 26 Mg and 20 Ne(p, γ) 21 Na reactions at LUNA - 22 October 2020

Resonance is running right now

Possible problems? > Beam Induced Background

Underground nuclear astrophysics and the study of ²²Ne(α , γ) ²⁶Mg and ²⁰Ne(p, γ) ²¹Na reactions at LUNA - 22 October 2020

E. Masha LUNA MV - Future

Underground nuclear astrophysics and the study of ²²Ne(α , γ) ²⁶Mg and ²⁰Ne(p, γ) ²¹Na reactions at LUNA - 22 October 2020

- ➤ Two beamlines
- Study of helium and carbon burning
 - $\label{eq:starsenergy} \square \ ^{14}N(p,\gamma)^{15}O \rightarrow \ \text{CNO bottle-neck}$
 - $\square \ ^{12}C + \ ^{12}C \rightarrow \ Fate of massive stars$
 - \square ²²Ne(α_n)²⁵Mg and ¹³C(α_n)¹⁶O \rightarrow s-process in AGB and massive stars

Nuclear Astrophysics Underground Laboratories

Underground nuclear astrophysics at LUNA: Yestarday, today and tomorrow

- First direct measurement of the 395 keV resonance of ${}^{22}Ne(\alpha, \gamma){}^{26}Mg$ reaction
- Study of the ${}^{20}Ne(p, r){}^{21}Na$ reaction below 400keV
- ➢ We are not alone anymore

The LUNA collaboration

INFN Roma1, Italy: C. Gustavino, A. Formicola
HZDR Dresden, Germany: D. Bemmerer, K. Stöckel,
INFN and Università di Padova, Italy: C. Broggini, A. Caciolli, R. Depalo, P. Marigo,
R. Menegazzo, D. Piatti
INFN LNGS /GSSI, Italy: A. Boeltzig, L. Csedreki, L. Di Paolo, M. Junker
MTA-ATOMKI Debrecen, Hungary: Z. Elekes, Zs. Fülöp, Gy. Gyürky, M. Takács
Konkoly Observatory, Hungarian Academy of Sciences, Hungary: M. Lugaro
INAF Teramo, Italy: O. Straniero
Università di Genova and INFN Genova, Italy: P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli
Università di Milano and INFN Milano, Italy: A. Guglielmetti, E. Masha
Università di Napoli and INFN Napoli, Italy: A. Best, G.F. Ciani, A. Di Leva, G. Imbriani
Università di Torino and INFN Torino, Italy: F. Cavanna, G. Gervino, P. Colombetti
Università di Bari and INFN Bari, Italy: F. Barile, V. Paticchio, L. Schiavulli, R. Perrino

"Some people are so crazy that they actually venture ínto deep mínes to observe the stars ín the sky" Naturalís Hístoría - Plíny, 44 A.D

Thank you!

Info: <u>eliana.masha@unimi.it</u> <u>alessandra.guglielmetti@mi.infn.it</u>

AGB stars and the slow neutron capture process

- Thermally pulsing stage (TP)
- Temperatures in the base of the convective zone sufficiently high to ignite the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction
- ²²Ne produced via ¹⁴N(α, γ)¹⁸F($\beta^+ \nu$)¹⁸O(α, γ)²²Ne

Low mass AGB stars ($\sim 4M_{\odot}$) Lower temperature In between pulses

Intermediate mass AGB stars Higher temperature During thermal pulses

