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Figure 1. Schematic illustration of the features most relevant to the !ssion phenomenon.
The red curve depicts (in a one-dimensional projection) the potential energy as a function
of the elongation; the ground state is at the lowest minimum, and the shape-isomeric
state is at the second minimum. From these states it is possible to tunnel through the
potential barrier. Tunnelling is also relevant for neutron or photon induced !ssion when
the resulting initial state lies below the !ssion barrier. If the initial state is excited above
the !ssion barrier, it may undergo a complicated shape evolution crossing the barrier
from above. Once the system !nds itself beyond the barrier, it relatively quickly descends
towards scission. There it divides into two nascent fragments, which subsequently move
apart under the in"uence of their mutual Coulomb repulsion while gradually attaining
their equilibrium shapes and become primary fragments. Primary fragments then de-
excite by evaporating neutrons, radiating photons, and undergoing β decay.

In addition to an SF, !ssion can be induced by a variety of nuclear reactions. The !ssion-
induced processes include: neutron capture (responsible for energy production in !ssion reac-
tors), electron capture and beta decay, photo!ssion, and reactions involving charged particles
and heavy ions. In all these processes, the !ssioning nucleus is created in an excited state,
which may lie above or below the !ssion barrier.

Theoretical descriptions of !ssion induced by fast probes often assume the creation of
a compound nucleus at a given thermal excitation energy. However, as discussed later, that
assumption might be ill-founded for fast probes because the nuclear system may not have
suf!cient time to thermalise before undergoing !ssion. This becomes increasingly important
at higher energies where pre-equilibrium processes play an increasingly signi!cant role and
may lead to the emission of one or more nucleons before equilibrium is reached. Moreover, as
the excitation energy of the compoundnucleus is increased, neutron evaporation competes ever
more favourablywith !ssion and as a result, one ormore neutronsmay be evaporated before!s-
sion occurs (multi-chance!ssion). In addition, for non-thermalised systems one should develop
approaches using !xed energy rather than !xed temperature.

2.2. Important observables

When talking about !ssion observables, it is important to remember that what is often
considered ‘experimental’ is often the result of an indirect process, in which a quantity of
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Two basic microscopic approaches to the description of induced fission dynamics: 

A) time- dependent generator coordinate method (TDGCM) 

Verriere and Regnier The TDGCM in Nuclear Physics

the one-body density). The generator state
∣

∣φ(q)
〉

is then obtained
by minimizing the Routhian

R[φ(q)] = EHFB[φ(q)]−
∑

i

λi

(

〈

φ(q)
∣

∣Q̂i

∣

∣φ(q)
〉

− qi
)2

, (1)

where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣

∣φ(q)
〉

.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle θ [16] and the generator states

∣

∣φ(θ)
〉

read

∣

∣φ(θ)
〉

= exp
(

iθ(Â− A)
)

|φ〉 . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣$(t)
〉

=
∫

q∈E
dq
∣

∣φ(q)
〉

f (q, t). (3)

The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
∫∫

dq dq′f %(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by

O(q, q′) =
〈

φ(q)
∣

∣Ô
∣

∣φ(q′)
〉

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

H(q, q′) =
〈

φ(q)
∣

∣Ĥ
∣

∣φ(q′)
〉

(Hamiltonian), (6)

N (q, q′) =
〈

φ(q)
∣

∣1̂
∣

∣φ(q′)
〉

(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed

generator states
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〉
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ψ̃(t)

〉

=
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a∈ϕ(E)
da
∣
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∣
φ̃(a)

〉

f̃ (a, t). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ %(a, t)O(a, a′)f̃ (a′, t), (11)

with

O(a, a′) =
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∣
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∣
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∣

∣

∣
φ̃(a′)

〉

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣$(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣$(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),
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⇒ represents the nuclear wave function by a superposition of 
generator states that are functions of collective coordinates. 

⇒ a fully quantum mechanical approach but only takes into account collective degrees of freedom in 
the adiabatic approximation. 

B) time-dependent density functional theory (TDDFT) 

4

determined by the time-dependent Dirac equation
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where the single-particle energy "k(t) = h k|ĥ| ki, and the single-particle Hamiltonian ĥ(r, t) reads

ĥ(r, t) = ↵ · (p̂� V ) + V
0 + �(mN + S). (14)

The scalar S(r, t) and four-vector V (r, t) potentials are consistently determined at each step in time by the time-
dependent densities and currents in the isoscalar-scalar, isoscalar-vector and isovector-vector channels,
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respectively. ⌧3 is the isospin Pauli matrix with eigenvalues +1 for neutrons, and �1 for protons (see details in
Ref. [20]). The time evolution of the occupation probability nk(t) = |vk(t)|2, and pairing tensor k(t) = u

⇤
k
(t)vk(t), is

governed by the following equations
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In time-dependent calculations, a monopole pairing interaction is employed, and the gap parameter�k(t) is determined
by the single-particle energy and the pairing tensor,

�k(t) =

"
G

X

k0>0

f("k0)k0

#
f("k), (17)

where f("k) is the cut-o↵ function for the pairing window.
In the calculations with time-dependent covariant DFT, the mesh spacing of the lattice is 1.0 fm for all directions,

and the box size is taken as Lx ⇥ Ly ⇥ Lz = 20 ⇥ 20 ⇥ 60 fm3. The time-dependent Dirac equation (13) is solved
with the predictor-corrector method, and the time-dependent equations (16) using the Euler algorithm. The step
for the time evolution is 6.67 ⇥ 10�4 zs. The density functional, pairing strength parameters G, and the cut-o↵
function f("k) for the pairing window are taken the same as in the calculation with TDGCM. The initial states
for the time evolution are obtained by self-consistent deformation-constrained relativistic DFT calculations in three-
dimensional lattice space based on the inverse Hamiltonian and Fourier spectral methods [23–25], with the box size:
Lx ⇥ Ly ⇥ Lz = 20⇥ 20⇥ 50 fm3.

B. Fission trajectories

In Fig. 1 we plot the TD(C)DFT fission trajectories from the initial points (denoted by open dots ) on the self-
consistent deformation energy surface of 240Pu. The initial points for the time evolution correspond to the iso-energy
contours at �1 MeV (upper panel) and �4 MeV (lower panel), below the energy of the equilibrium minimum. Only
those trajectories that end up in scission of the fissioning nucleus are shown. Trajectories that start from very
asymmetric shapes (large �30 values in the upper panel), or from almost symmetric shapes (small �30 values in both
panels), do not lead to scission but get trapped in local minima. Most trajectories simply follow the path of steepest
descent, especially in the lower panel where the initial points are closer to scission. In this case, scission is obtained
also for very asymmetric shapes. The disconnected region without open dots in the lower panel correspond to points
on the deformation energy surface that, in the TDGCM calculation, are located beyond the scission contour defined
by the number of particles in the neck.
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⇒ classical evolution of independent nucleons 
in mean-field potentials, cannot be applied in 
classically forbidden regions of the collective 
space, nor does it take into account quantum 
fluctuations. 

⇒ automatically includes the one-body dissipation mechanism, but can only simulate a single fission event 
by propagating the nucleons independently. 

⇒ no dissipation mechanism. 



The time-dependent generator coordinate method (TDGCM) 

⇒ Griffin-Hill-Wheeler (GHW) ansatz: 
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where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣
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.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
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Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time
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The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
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dq dq′f %(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by
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Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as
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〈
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(Hamiltonian), (6)
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〈
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(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed
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Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ %(a, t)O(a, a′)f̃ (a′, t), (11)

with
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Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣$(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣$(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),
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FIG. 1. Axially symmetric quadrupole-octupole energy surface
in the β20-β30 plane for 228Th. The contours join points on the sur-
face with the same energy, and the separation between neighboring
contours is 0.2 MeV.

A. Collective excitation spectrum of 228Th

In the theoretical framework based on relativistic energy
density functionals, the evolution of quadrupole and octupole
shapes in thorium isotopes has been explored and successfully
described using the collective Hamiltonian QOCH [12,13],
and the interacting boson model (IBM) [61,62]. Figure 1
displays the contour plot in the (β20,β30) plane of the defor-
mation energy surface of 228Th in the region around the equi-
librium minimum, obtained at zero temperature by imposing
constraints on the expectation values of the mass quadrupole
moment 〈Q̂20〉 and octupole moment 〈Q̂30〉. The plots are
symmetric with respect to the β30 axis. The energy surface
exhibits a global minimum at (β20,β30) ≈ (0.2, 0.15), and it
is rather soft along the octupole direction. Similar topologies
have also been predicted by earlier self-consistent mean-field
calculations, based on both nonrelativistic [63] and relativis-
tic energy density functionals [12,13,61,62,64]. The single-
nucleon wave functions, energies, and occupation factors,
determine the parameters of the QOCH as described in Sec. II.
The resulting low-energy spectrum of collective positive-
parity and negative-parity yrast states of 228Th, including the
intraband B(E2) values and the B(E3; 3−

1 → 0+
1 ) value (both

in Weisskopf units) are plotted in Fig. 2, and compared with
available data [59,60]. For the excitation energies a very good
agreement with experiment is obtained, except for the fact that
the empirical moment of inertia is larger than that predicted by
the collective Hamiltonian. This is a well-known effect of us-
ing the simple Inglis-Belyaev approximation for the moment
of inertia. The wave functions, however, are not affected by
this approximation and we note that the model reproduces
the intraband E2 transition probabilities. The negative-parity
band is located close in energy to the ground-state positive-
parity band, and its low excitation energy reflects the degree

FIG. 2. Experimental [59,60] and calculated yrast states of posi-
tive and negative parity in 228Th. The in-band B(E2) values (dotted)
and the B(E3; 3−

1 → 0+
1 ) (solid) (both in Weisskopf units) are also

shown.

of octupole correlations in the equilibrium minimum, as well
as the softness of the potential in the β30 direction.

B. Induced fission: Charge fragment distributions

In Fig. 3 we plot the deformation energy curves as func-
tions of the quadrupole deformation parameter β20, along
the least-energy fission paths of 228Th, 234U, 240Pu, 244Cm,
and 250Cf at zero temperature. A triple-humped barrier is
predicted along the static fission path for 228Th, with the
barrier heights 6.06, 6.42, and 4.20 MeV from the inner to
the outer barrier, respectively. This is consistent with previous
results obtained in Ref. [40] by using the energy density

FIG. 3. Deformation energy curves (in MeV) along the least-
energy fission path as functions of the quadrupole deformation
parameter β20, for 228Th, 234U, 240Pu, 244Cm, and 250Cf. All curves
are normalized to their values at equilibrium minimum.
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2. the equality

〈!|
(

Ĥ − ih̄
d

dt

)

∣

∣"(t)
〉

= 0 (14)

is satisfied for every GHW state |!〉.

In other words, we impose that the residual (Ĥ − ih̄d/dt)
∣

∣"(t)
〉

is orthogonal to the space of GHW states. This last assumption
is equivalent to a Frenkel’s variational principle whose link to
other time-dependent variational principles is discussed in [17].
By injecting the GHW ansatz (3) into (14), we obtain

∫ ∫

dq dq′f #!(q
′)
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (15)

Here f! is the mixing function defining the GHW state |!〉.
Solving Equation (15) for any state |!〉 is equivalent to look for a
function f verifying the so-called Griffin-Hill-Wheeler equation
in its time-dependent form

∀q′
:

∫

dq
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (16)

The time-evolution of the norm and the energy reads

d

dt

〈

"(t)
∣

∣"(t)
〉

=
i

h̄

〈

"(t)
∣

∣(Ĥ† − Ĥ)
∣

∣"(t)
〉

, (17)

d

dt
E(t) =

i

h̄

〈

"(t)
∣

∣(Ĥ† − Ĥ)Ĥ
∣

∣"(t)
〉

. (18)

Thus, this equation of motion preserves the norm of the wave
function and the total energy of the system if the many-
body Hamiltonian is Hermitian. However, it is not always the
case. To simulate open systems, for instance in the context
of nuclear reactions, a common practice consists in adding
an imaginary absorption term to the Hamiltonian that acts
in the neighborhood of the finite simulation box. Finally,
the time-dependent GHW equation is a continuous system
of integrodifferential equations. Its non-local nature in the q
representation brings a serious hurdle to its numerical solving.

2.4. Mapping to the Collective Wave
Functions
The equation of motion (15) and an initial condition for
the system is sufficient to determine the dynamics in the
TDGCM framework. It is possible to numerically integrate in
time this equation with an implicit scheme such as Crank-
Nicolson [18]. However, the TDGCM framework offers another
natural approach that turns out to be both enlightening from
the mathematical perspective and more stable from a numerical
point of view. This method resorts on a mapping between the
GHW states and some functions of the collective coordinate q.
The rigorous mathematical construction of this mapping in a
general case is detailed in [15]. Here we will only build this
mapping in the case where the norm kernel N is of Hilbert-
Schmidt type [19]. It is the case as long as the domain E of the
collective coordinates is bounded, which is valid for a wide range
of applications.

To start with, we recall that any kernel O(q, q′) also defines a
linear operator acting on the space of functions L2(E)

(Of )(q) =
∫

q′∈E
dq′O(q, q′)f (q′), (19)

as long as this integral is mathematically defined. The Hilbert-
Schmidt property of the norm operator implies the existence of a
complete, discrete and orthonormal family of functions {ui(q)}i
of L2(E) that diagonalizes the linear operator associated with the
norm kernel

∀i > 0 : Nui = λiui. (20)

Since N is a Hermitian positive semidefinite operator, its
eigenvalues are real and positives. We adopt here the convention
where they are sorted by decreasing order and assume that only
the first r eigenvalues are not zero. From this diagonalization, we
can split the space of functions f into two orthogonal subspaces:
the one associated with the vanishing eigenvalues and the one
associated with the strictly positive eigenvalues. Formally, we
write down the two projectors

Q(q, q′) =
∑

i≤r

ui(q)u
#
i (q

′) (21)

P(q, q′) =
∑

i>r

ui(q)u
#
i (q

′) (22)

with

Q+ P = 1L2(E). (23)

The projected space PL2(E) is associated with the null
eigenvalues of the norm operator N . Any GHW state built from
a weight function belonging to this space gives the null many-
body state. Its orthogonal complement is the subspace Q(E) =
QL2(E). We call collective wave functions, the functions living in
this subspace.

We can define uniquely the positive hermitian square-root of
N (which is also Hermitian) with

N (q, q′) =
∫

a∈E
N 1/2(q, a)N 1/2(a, q′) da. (24)

We can, therefore, associate to any GHW state its collective wave
function g(q) ∈ Q(E) by the equation

g = N 1/2f . (25)

Conversely, the operator N 1/2 is invertible in Q(E). Therefore,
for any collective wave function g ∈ Q(E), one can build its
corresponding GHW state with the weight function

f = N−1/2g. (26)

Finally, this mapping between Q(E) and the GHW states is
isometric as we may show that for any pair of GHW states" and
! we have the property

〈"|!〉 =
〈

g"
∣

∣g!
〉

=
∫

q∈E
g#" (q)g!(q) dq. (27)

Frontiers in Physics | www.frontiersin.org 4 July 2020 | Volume 8 | Article 233

GHW equation:

Verriere and Regnier The TDGCM in Nuclear Physics

the one-body density). The generator state
∣

∣φ(q)
〉

is then obtained
by minimizing the Routhian

R[φ(q)] = EHFB[φ(q)]−
∑

i

λi

(

〈

φ(q)
∣

∣Q̂i

∣

∣φ(q)
〉

− qi
)2

, (1)

where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣

∣φ(q)
〉

.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle θ [16] and the generator states

∣

∣φ(θ)
〉

read

∣

∣φ(θ)
〉

= exp
(

iθ(Â− A)
)

|φ〉 . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣$(t)
〉

=
∫

q∈E
dq
∣

∣φ(q)
〉

f (q, t). (3)

The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
∫∫

dq dq′f %(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by

O(q, q′) =
〈

φ(q)
∣

∣Ô
∣

∣φ(q′)
〉

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

H(q, q′) =
〈

φ(q)
∣

∣Ĥ
∣

∣φ(q′)
〉

(Hamiltonian), (6)

N (q, q′) =
〈

φ(q)
∣

∣1̂
∣

∣φ(q′)
〉

(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed

generator states
∣

∣

∣
φ̃(a)

〉

=
∣

∣φ(ϕ−1(a))
〉

∣

∣

∣
ψ̃(t)

〉

=
∫

a∈ϕ(E)
da
∣

∣

∣
φ̃(a)

〉

f̃ (a, t). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ %(a, t)O(a, a′)f̃ (a′, t), (11)

with

O(a, a′) =
〈

φ̃(a)
∣

∣

∣
Ô
∣

∣

∣
φ̃(a′)

〉

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣$(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣$(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),
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2. the equality

〈!|
(

Ĥ − ih̄
d

dt

)

∣

∣"(t)
〉

= 0 (14)

is satisfied for every GHW state |!〉.

In other words, we impose that the residual (Ĥ − ih̄d/dt)
∣

∣"(t)
〉

is orthogonal to the space of GHW states. This last assumption
is equivalent to a Frenkel’s variational principle whose link to
other time-dependent variational principles is discussed in [17].
By injecting the GHW ansatz (3) into (14), we obtain

∫ ∫

dq dq′f #!(q
′)
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (15)

Here f! is the mixing function defining the GHW state |!〉.
Solving Equation (15) for any state |!〉 is equivalent to look for a
function f verifying the so-called Griffin-Hill-Wheeler equation
in its time-dependent form

∀q′
:

∫

dq
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (16)

The time-evolution of the norm and the energy reads

d

dt

〈

"(t)
∣

∣"(t)
〉

=
i

h̄

〈

"(t)
∣

∣(Ĥ† − Ĥ)
∣

∣"(t)
〉

, (17)

d

dt
E(t) =

i

h̄

〈

"(t)
∣

∣(Ĥ† − Ĥ)Ĥ
∣

∣"(t)
〉

. (18)

Thus, this equation of motion preserves the norm of the wave
function and the total energy of the system if the many-
body Hamiltonian is Hermitian. However, it is not always the
case. To simulate open systems, for instance in the context
of nuclear reactions, a common practice consists in adding
an imaginary absorption term to the Hamiltonian that acts
in the neighborhood of the finite simulation box. Finally,
the time-dependent GHW equation is a continuous system
of integrodifferential equations. Its non-local nature in the q
representation brings a serious hurdle to its numerical solving.

2.4. Mapping to the Collective Wave
Functions
The equation of motion (15) and an initial condition for
the system is sufficient to determine the dynamics in the
TDGCM framework. It is possible to numerically integrate in
time this equation with an implicit scheme such as Crank-
Nicolson [18]. However, the TDGCM framework offers another
natural approach that turns out to be both enlightening from
the mathematical perspective and more stable from a numerical
point of view. This method resorts on a mapping between the
GHW states and some functions of the collective coordinate q.
The rigorous mathematical construction of this mapping in a
general case is detailed in [15]. Here we will only build this
mapping in the case where the norm kernel N is of Hilbert-
Schmidt type [19]. It is the case as long as the domain E of the
collective coordinates is bounded, which is valid for a wide range
of applications.

To start with, we recall that any kernel O(q, q′) also defines a
linear operator acting on the space of functions L2(E)

(Of )(q) =
∫

q′∈E
dq′O(q, q′)f (q′), (19)

as long as this integral is mathematically defined. The Hilbert-
Schmidt property of the norm operator implies the existence of a
complete, discrete and orthonormal family of functions {ui(q)}i
of L2(E) that diagonalizes the linear operator associated with the
norm kernel

∀i > 0 : Nui = λiui. (20)

Since N is a Hermitian positive semidefinite operator, its
eigenvalues are real and positives. We adopt here the convention
where they are sorted by decreasing order and assume that only
the first r eigenvalues are not zero. From this diagonalization, we
can split the space of functions f into two orthogonal subspaces:
the one associated with the vanishing eigenvalues and the one
associated with the strictly positive eigenvalues. Formally, we
write down the two projectors

Q(q, q′) =
∑

i≤r

ui(q)u
#
i (q

′) (21)

P(q, q′) =
∑

i>r

ui(q)u
#
i (q

′) (22)

with

Q+ P = 1L2(E). (23)

The projected space PL2(E) is associated with the null
eigenvalues of the norm operator N . Any GHW state built from
a weight function belonging to this space gives the null many-
body state. Its orthogonal complement is the subspace Q(E) =
QL2(E). We call collective wave functions, the functions living in
this subspace.

We can define uniquely the positive hermitian square-root of
N (which is also Hermitian) with

N (q, q′) =
∫

a∈E
N 1/2(q, a)N 1/2(a, q′) da. (24)

We can, therefore, associate to any GHW state its collective wave
function g(q) ∈ Q(E) by the equation

g = N 1/2f . (25)

Conversely, the operator N 1/2 is invertible in Q(E). Therefore,
for any collective wave function g ∈ Q(E), one can build its
corresponding GHW state with the weight function

f = N−1/2g. (26)

Finally, this mapping between Q(E) and the GHW states is
isometric as we may show that for any pair of GHW states" and
! we have the property

〈"|!〉 =
〈

g"
∣

∣g!
〉

=
∫

q∈E
g#" (q)g!(q) dq. (27)
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Going further, any many-body observable Ô can be mapped into
a collective operator Õ acting on the space Q(E). This operator is
defined by 2

Õ = N−1/2ON−1/2. (28)

The isometry of the mapping gives a simple mean to compute
matrix elements of observables.

〈

!
∣

∣Ô
∣

∣"
〉

=
〈

g!
∣

∣Õ
∣

∣g"
〉

(29)

Finally, we can reduce the TDGCM equation of motion
(Equation 16) in this language. It becomes a time-dependent
Schrödinger equation for the collective wave function

ih̄ġ = H̃g. (30)

This equation of motion presents several practical advantages
compared to Equation (16). The collective Hamiltonian H̃ is,
in general, still non-local, but the time derivative of g has an
explicit expression. It opens the possibility of using faster time
integration schemes at the cost of computing first the collective
Hamiltonian through Equation (28). Also, the collective wave
function is expected to have a smoother behavior compared to the
weight function f . This comes directly from Equation (26) where
we see that eigenvalues of the norm kernel approaching zero add
diverging components to f . The Equation (30) may be directly
solved by discretizing the collective wave function g(q). In many
cases, it is appropriate to solve it directly in the representation
given by the basis {ui(q)}i≤r . The collective Hamiltonian H̃, as
well as other collective observables, are indeed easier to compute
in this particular basis.

2.5. Difficulties Related to the Energy
Kernel
We discussed general features of the TDGCM approach valid
for any family of generator states. In nuclear physics, most
applications of the GCM rely on families of Bogoliubov vacua.
A crux of the GCM approach is then the determination of
the norm and Hamiltonian kernels between such many-body
states. The [20] provides a general and now-standard approach
to fully determine the norm kernel between Bogoliubov vacua
based on the calculation of a matrix Pfaffian. However, the
evaluation of the energy kernel in nuclear physics applications
suffers from several major difficulties. The origin of these
flaws stems from the fact that our practical applications
do not rely on a linear many-body Hamiltonian but some
effective Hamiltonians or energy density functionals. This topic
was extensively discussed in the context of static GCM for
nuclear structure [21–25]. We briefly list here the pitfalls
raised by the determinations of the energy kernel in practical
nuclear applications.

2Note that such a definition is possible for any observable Ô due to the property

QO = O.

2.5.1. Neglecting Some Exchange Terms
A common practice to avoid unbearable numerical costs is the
neglection or the approximation of parts of the many-body
Hamiltonian. For instance, it is widespread to use the Slater
approximation of the Coulomb exchange term or to neglect
the exchange part of the pairing force between nucleons [26].
Although convenient from a numerical point of view, it was
shown in [27] that such approximations may introduce poles
in the expression of the energy kernel. These poles lead to a
divergence when calculated between some Bogoliubov vacua.
The [28, 29] illustrate this behavior in a case of particle number
symmetry restoration.

2.5.2. Violation of Symmetries by Energy Density
Functionals
In many practical applications, the nucleon-nucleon interaction
is encoded in an energy density functional (EDF). Using
such a formalism in combination with a GCM mixture of
states requires a sound definition of a multireference energy
density functional [22]. Such a definition is often provided
and implemented in the form of the reduced energy kernel
h(q, q′) = H(q, q′)/N (q, q′) between two non-orthogonal
Bogoliubov vacua. For a two-body Hamiltonian case, the
reduced energy kernels may be expressed from the generalized
Wick theorem

h(q, q′) =
∑

ij

tijρ
qq′

ji +
1

2

∑

ijkl

v̄ijklρ
qq′

ki ρ
qq′

lj +
1

4

∑

ijkl

v̄ijklκ
qq′∗
ij κ

qq′

kl .

(31)
It involves the matrix elements of the one- and two-body parts of
the interaction t and v̄ as well as transition densities such as

ρ
qq′

ij =

〈

φ(q)
∣

∣â†j âi
∣

∣φ(q′)
〉

〈

φ(q)
∣

∣φ(q′)
〉 . (32)

In the practical implementations of the multireference EDF
approach, such a kernel is defined by analogy as the same bilinear
form whose coefficients come from a fit procedure. The main
differences compared to the EDF case are:

1. the coefficients defining the EDF may depend on some
densities of the system,

2. the coefficients in the particle-particle channels may differ
from the ones in the particle-hole channels,

3. the matrix v̄may not be antisymmetric.

As detailed in [22, 30], the violation of these properties leads
in some cases to a divergence of the reduced energy kernel that
biases or prevents practical applications.

2.5.3. Density Dependent Terms of Energy Density
Functionals
In an EDF framework, the coefficients of Equation (31) depend
on the density of the system. The exact formulation of this
dependency is yet subject to an arbitrary choice, especially for
the non-diagonal part of the kernel. Several prescriptions have
been developed and tested during the last two decades [31,
32]. A prescription that fulfills many important conditions
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Going further, any many-body observable Ô can be mapped into
a collective operator Õ acting on the space Q(E). This operator is
defined by 2

Õ = N−1/2ON−1/2. (28)

The isometry of the mapping gives a simple mean to compute
matrix elements of observables.

〈

!
∣

∣Ô
∣

∣"
〉

=
〈

g!
∣

∣Õ
∣

∣g"
〉

(29)

Finally, we can reduce the TDGCM equation of motion
(Equation 16) in this language. It becomes a time-dependent
Schrödinger equation for the collective wave function

ih̄ġ = H̃g. (30)

This equation of motion presents several practical advantages
compared to Equation (16). The collective Hamiltonian H̃ is,
in general, still non-local, but the time derivative of g has an
explicit expression. It opens the possibility of using faster time
integration schemes at the cost of computing first the collective
Hamiltonian through Equation (28). Also, the collective wave
function is expected to have a smoother behavior compared to the
weight function f . This comes directly from Equation (26) where
we see that eigenvalues of the norm kernel approaching zero add
diverging components to f . The Equation (30) may be directly
solved by discretizing the collective wave function g(q). In many
cases, it is appropriate to solve it directly in the representation
given by the basis {ui(q)}i≤r . The collective Hamiltonian H̃, as
well as other collective observables, are indeed easier to compute
in this particular basis.

2.5. Difficulties Related to the Energy
Kernel
We discussed general features of the TDGCM approach valid
for any family of generator states. In nuclear physics, most
applications of the GCM rely on families of Bogoliubov vacua.
A crux of the GCM approach is then the determination of
the norm and Hamiltonian kernels between such many-body
states. The [20] provides a general and now-standard approach
to fully determine the norm kernel between Bogoliubov vacua
based on the calculation of a matrix Pfaffian. However, the
evaluation of the energy kernel in nuclear physics applications
suffers from several major difficulties. The origin of these
flaws stems from the fact that our practical applications
do not rely on a linear many-body Hamiltonian but some
effective Hamiltonians or energy density functionals. This topic
was extensively discussed in the context of static GCM for
nuclear structure [21–25]. We briefly list here the pitfalls
raised by the determinations of the energy kernel in practical
nuclear applications.

2Note that such a definition is possible for any observable Ô due to the property

QO = O.

2.5.1. Neglecting Some Exchange Terms
A common practice to avoid unbearable numerical costs is the
neglection or the approximation of parts of the many-body
Hamiltonian. For instance, it is widespread to use the Slater
approximation of the Coulomb exchange term or to neglect
the exchange part of the pairing force between nucleons [26].
Although convenient from a numerical point of view, it was
shown in [27] that such approximations may introduce poles
in the expression of the energy kernel. These poles lead to a
divergence when calculated between some Bogoliubov vacua.
The [28, 29] illustrate this behavior in a case of particle number
symmetry restoration.

2.5.2. Violation of Symmetries by Energy Density
Functionals
In many practical applications, the nucleon-nucleon interaction
is encoded in an energy density functional (EDF). Using
such a formalism in combination with a GCM mixture of
states requires a sound definition of a multireference energy
density functional [22]. Such a definition is often provided
and implemented in the form of the reduced energy kernel
h(q, q′) = H(q, q′)/N (q, q′) between two non-orthogonal
Bogoliubov vacua. For a two-body Hamiltonian case, the
reduced energy kernels may be expressed from the generalized
Wick theorem

h(q, q′) =
∑

ij

tijρ
qq′

ji +
1

2

∑

ijkl

v̄ijklρ
qq′

ki ρ
qq′

lj +
1

4

∑

ijkl

v̄ijklκ
qq′∗
ij κ

qq′
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(31)
It involves the matrix elements of the one- and two-body parts of
the interaction t and v̄ as well as transition densities such as

ρ
qq′

ij =

〈

φ(q)
∣

∣â†j âi
∣

∣φ(q′)
〉

〈

φ(q)
∣

∣φ(q′)
〉 . (32)

In the practical implementations of the multireference EDF
approach, such a kernel is defined by analogy as the same bilinear
form whose coefficients come from a fit procedure. The main
differences compared to the EDF case are:

1. the coefficients defining the EDF may depend on some
densities of the system,

2. the coefficients in the particle-particle channels may differ
from the ones in the particle-hole channels,

3. the matrix v̄may not be antisymmetric.

As detailed in [22, 30], the violation of these properties leads
in some cases to a divergence of the reduced energy kernel that
biases or prevents practical applications.

2.5.3. Density Dependent Terms of Energy Density
Functionals
In an EDF framework, the coefficients of Equation (31) depend
on the density of the system. The exact formulation of this
dependency is yet subject to an arbitrary choice, especially for
the non-diagonal part of the kernel. Several prescriptions have
been developed and tested during the last two decades [31,
32]. A prescription that fulfills many important conditions
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TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

➠ the overlap between two arbitrary generator states can be approximated by a Gaussian function: 

➠ the Hamiltonian kernel can be approximated:
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FIGURE 3 | The gray surface represents the generator states’ HFB energy as a function of q20 and q30. On top of this, the color map gives the quantity

P(q, t = 0.550 zs) in the same conditions than those of Figure 1.

(substantially bigger, for example, than in the case of the
static GCM calculations for nuclear structure). This makes the
computation of the norm and Hamiltonian kernel intensive
but still embarrassingly parallel. Besides, in the case of fission,
techniques to determine the post-scission observables of the
fragments still need to be developed for the exact TDGCM. For
instance, some simplifying hypotheses on the way to treat open
domains of collective coordinates are commonly used under the
Gaussian Overlap Approximation [41] but are no longer valid in
the exact TDGCM framework.

3. GAUSSIAN OVERLAP APPROXIMATION
(GOA)

In its straightforward application, the TDGCM leads to a
non-local equation of motion that must be solved in a high-
dimensional space in most of the practical calculations. As
mentioned in Sec. 2, solving this equation involves a high
numerical cost that strongly hurdles its applications in nuclear
physics. Several approximate treatments of the TDGCM have
been developed with the aim to build a local equation of
motion for the collective wave function g(q, t) (cf. Equation 30).
The Gaussian overlap approximation (GOA) is one of these
approximations, which leverages the fact that the overlap and
Hamiltonian kernels can, in some cases, be parameterized
in terms of Gaussians of the variable q. In its static form,
the GOA has been largely used and applied for nuclear
structure. Especially, it provides a nice bridge between the Bohr
Hamiltonian equation that was first formulated in [42] and a
quantum treatment based on the 3A + A nucleons degrees of
freedom [43–47]. Extensive reviews of the static version of the

GOA can be found in [16, 48]. We focus here on its time-
dependent flavor.

3.1. TDGCM+GOA With Time Even
Generator States
3.1.1. Main Assumptions
In its most standard form, the GOA framework assumes the
following situation:

1. we have a family of normed generator states {
∣

∣φ(q)
〉

}
parameterized by a vector of real coordinates q ∈ "m;

2. all the states of the set are time-even, i.e., they are their own
symmetric by the time-reversal operation;

3. the function q →
∣

∣φ(q)
〉

is continuous and twice derivable;
4. the overlap between two arbitrary generator states can be

approximated by a Gaussian shape

N (q, q′) % exp

[

−
1

2
(q− q′)tG(q̄)(q− q′)

]

, (35)

with q̄ = (q+ q′)/2 and G(q̄) a real positive definite matrix;
5. the Hamiltonian kernel can be approximated by

H(q, q′) % N (q, q′)h(q, q′), (36)

where h(q, q′), a polynomial of degree two in the collective
variables q and q′, is the reduced Hamiltonian.

In most applications of the TDGCM+GOA, the generator states
are built as constrained Hartree-Fock-Bogoliubov states of even-
even nuclei which ensures the time even property. The question
is then: what are the situations where the Gaussian shape
approximation is verified within a small error? Already from the
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been developed with the aim to build a local equation of
motion for the collective wave function g(q, t) (cf. Equation 30).
The Gaussian overlap approximation (GOA) is one of these
approximations, which leverages the fact that the overlap and
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freedom [43–47]. Extensive reviews of the static version of the

GOA can be found in [16, 48]. We focus here on its time-
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In its most standard form, the GOA framework assumes the
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symmetric by the time-reversal operation;

3. the function q →
∣
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N (q, q′) % exp
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−
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(q− q′)tG(q̄)(q− q′)

]

, (35)

with q̄ = (q+ q′)/2 and G(q̄) a real positive definite matrix;
5. the Hamiltonian kernel can be approximated by

H(q, q′) % N (q, q′)h(q, q′), (36)

where h(q, q′), a polynomial of degree two in the collective
variables q and q′, is the reduced Hamiltonian.

In most applications of the TDGCM+GOA, the generator states
are built as constrained Hartree-Fock-Bogoliubov states of even-
even nuclei which ensures the time even property. The question
is then: what are the situations where the Gaussian shape
approximation is verified within a small error? Already from the
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polynomial of degree two in the collective variables 

➠ time-dependent Schroedinger-like equation for the collective wave function. The collective Hamiltonian: 

Verriere and Regnier The TDGCM in Nuclear Physics

The identification of this expression with (29) shows that the
collective Hamiltonian is local. It reduces to a standard kinetic-
plus-potential Hamiltonian acting on the collective wave function

H̃(α) = −
h̄2

2
∇αB(α)∇α + V(α). (50)

The potential and inertia matrices in this coordinate
representation are 5

V(α) = h(α,α)−
1

2
Tr(hαα′ )

B(α) =
1

2h̄2
(hαα′ − hαα).

(51)

Injecting this expression of the collective Hamiltonian into (30)
and solving the resulting equation gives the time-evolution of the
unknown function g(α). The ultimate step is to transform back
this equation of motion to another one acting on the original
set of coordinates q. Doing so, we get the same equation with a
transformed local collective Hamiltonian

H̃(q) = −
h̄2

2
√

γ (q)
∇q

[

√

γ (q)B(q)
]

∇q + V(q). (52)

The new collective Hamiltonian involves ametric γ (q) defined by

γ (q) = det
(

G(q)
)

. (53)

The inertia tensor takes the more involved form

B(q) =
1

2h̄2
G−1(q)

[

hqq′ − hqq +
∑

n

"n(q)hqn

]

G−1(q). (54)

The notation "n(q) stands for the Christoffel symbol. It is a
matrix related to G(q) through the relation

"n
kl(q) =

1

2

∑

i

G−1
ni

(

∂Gki

∂ql
+
∂Gil

∂qk
−
∂Glk

∂qi

)

. (55)

Finally, the potential becomes in this set of coordinate

V(q) = h(q, q)−
1

2
Tr
(

G−1(q)hqq′
)

. (56)

The first term is the HFB energy of the generator state
∣

∣φ(q)
〉

.
The second term is a zero-point correction that contains second
derivatives of the reduced Hamiltonian. With some additional
work, it is possible to express this zero-point correction εZPE in
a slightly more practical form that involves the inertia tensor and
second derivatives of the energy h(q, q) only

εZPE(q) = −
h̄2

2
Tr(BG)−

1

8
Tr

(

G−1 ∂
2h(q, q)

∂q2

)

+
1

8
Tr

(

G−1
∑

n

"n ∂h(q, q)

∂an

)

. (57)

5 Note that some higher-order correction terms in the potential are neglected here
[see [48] for more details].

The equation of evolution (30) along with the expression
of the collective Hamiltonian (52) and its components (53),
(56), and (54) define the dynamics of the system in the
TDGCM+GOA framework.

3.1.3. Inertia and Metric
The inertia tensor and the metric are quantities that depend
on the derivatives of the generator states and the reduced
Hamiltonian. One possibility could be to determine these
derivatives numerically, for instance, with a finite difference
method. In the standard situation where the generator states are
constrained HFB solutions, one can find an analytical expression
of the inertia and the metric. We recall here this result at any
point q

G =
1

2
[M(1)]−1M(2)[M(1)]−1. (58)

B = M(1)[M(2)]−1M̃
(1)
[M(2)]−1M(1). (59)

The moments M(K) and M̃
(K)

involve the QRPA matrix M

of the state
∣

∣φ(q)
〉

and are defined in Appendix 7.1. For the
complete derivation of these results, we refer the reader to [52]
and references therein. Note that this result neglects the term
involving the Christoffel symbol in the inertia. The argument
for this approximation relies on the slow variation of the metric
according to the collective coordinates. We are not aware of
the systematic verification of the validity of this assumption in
applications.

In all TDGCM+GOA practical applications, the so-called
perturbative cranking approximation is used to avoid a costly
inversion of the QRPA matrix required to compute the metric
and inertia. It consists in approximating the QRPA matrix by a
diagonal part only, in the quasiparticle basis that diagonalizes the
generalized density matrix of

∣

∣φ(q)
〉

. This gives a simple and well

known form for the momentsM(K)

M(K)
ij = M̃(K)

ij = Re
∑

µν

〈

µν
∣

∣Q̂i

∣

∣φ(q)
〉〈

φ(q)
∣

∣Q̂j

∣

∣µν
〉

(Eµ + Eν)K
, (60)

where |µν〉 is a two quasiparticles excitation built on top of
the generator state, and Eµ and Eν are the corresponding
quasiparticle energies.

The GCM+GOA framework unambiguously defines the
metric and inertia as functions of the successive derivatives
of the generator states and reduced Hamiltonian. However, it
is known that this inertia and its approximate perturbative
cranking estimation is too low to describe several situations
correctly. One example is the case of a translation motion [48].
Several studies compare the GOA inertia with inertia provided
by other theories yielding an equivalent collective equation of
motion, such as quantized ATDHFB [53–55]. In [56], the authors
extend the TDGCM+GOA framework by introducing conjugate
coordinates that bring time odd components into the generator
states. In particular, they show that the resulting collective
Hamiltonian takes the same form as Equation (52) but where
the ATDHFB inertia replaces the GOA inertia. This justifies the
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Example Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and 
octupole deformation parameters as collective degrees of freedom): 

i~ @

@t
g(�2,�3, t) =

"
�~2

2

X

kl

@

@�k
Bkl(�2,�3)

@

@�l
+ V (�2,�3)

#
g(�2,�3, t)



RMF+BCS quadrupole and octupole constrained deformation energy surface of 226Th in the β2 − β3 plane. 

PC-PK1 plus δ-force pairing

→ includes static correlations:  
deformations & pairing 

→ does not include dynamic  
(collective) correlations that  
arise from symmetry restoration  
and quantum fluctuations  
around mean-field minima



The collective space is divided into an inner region in 
which the nucleus is whole, and an external region 
that contains the two fission fragments. The set of 
scission configurations defines the hyper-surface that 
separates the two regions. 

➠ static fission path 

A triple-humped fission barrier is predicted along 
the static fission path, and the calculated heights 
are 7.10, 8.58, and 7.32 MeV from the inner to the 
outer barrier. 



F (⇠, t) =

Z t

t=0
dt

Z

(�2,�3)2⇠
J(�2,�3, t) · dS

Y (A) /
X

⇠2A
lim

t!+1
F (⇠, t)

Bkl(q2, q3) =
2

~2
h
M(1)M�1

(3)M(1)

i

kl

M(n),kl(q2, q3) =
X

i,j

hi| Q̂k |ji hj| Q̂l |ii
(Ei + Ej)n

(uivj + viuj)
2

The flux of the probability current through the scission hyper-surface provides a measure of the probability 
of observing a given pair of fragments at time t. 

The yield for the fission fragment with mass A: 

Collective parameters 

The mass tensor associated with q2 = ⟨Q2⟩ and q3 = ⟨Q3⟩ ➠ perturbative cranking approximation 

⇒ continuity equation for the probability density:
@

@t
|g(�2,�3, t)|2 = �r · J(�2,�3, t)

…the probability current:

Jk(�2,�3, t) =
~
2i

3X

l=2

Bkl(�2,�3)


g⇤(�2,�3, t)

@g(�2,�3, t)

@�l
� g(�2,�3, t)

@g⇤(�2,�3, t)

@�l
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Sensitivity of fission dynamics to the pairing strength

The height of the fission barriers (in MeV) with respect 
to the corresponding ground-state minima:

FIG. 4: (Color online) The calculated total kinetic energy of the nascent fission fragments for
226

Th

as a function of fragment mass, in comparison to the data [53].

TABLE I: The height of the fission barriers (in MeV) with respect to the corresponding ground-

state minima, for di↵erent values of the pairing strengths.

BI Basy
II

Basy
III

Bsym
II

Bsym
III

90% pairing 8.23 9.47 7.74 15.64 6.38

100% pairing 7.10 8.58 7.32 14.21 5.72

110% pairing 5.92 7.78 7.09 12.72 5.17

dynamics, we analyze the characteristics of the fission process for di↵erent strengths of

the pairing interaction. Figure 5 displays the PESs of 226Th for three parametrizations of

pairing force: (Vn, Vp) = (324, 340.2), (360, 378), and (396, 415.8) MeV fm3. These values

correspond to 90%, 100%, and 110%, respectively, of the original pairing strengths that

were determined to reproduce the empirical pairing gaps of 226Th. Even though the general

topography of the PESs does not change significantly as pairing increases, the barriers are

reduced considerably (see Table I). In particular, the ridge between the symmetric and

asymmetric fission valleys is lowered, and this leads to pronounced competition between the

two fission modes (c.f. Fig. 10).

In Fig. 6 we plot the collective masses B�1
22 and B

�1
33 , related to vibrations in �2 and �3,

11

… the TDGCM initial state is a Gaussian superposition  
of quasibound states: 

3

free energy F = E(T )− TS, evaluated at constant tem-
perature T [44]. E(T ) is the binding energy of the
deformed nucleus, and the deformation-dependent en-
ergy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Qλµ = rλYλµ. The nuclear
shape is parameterized by the deformation parameters

βλµ =
4π

3ARλ
〈Qλµ〉. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters βλµ
with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [55]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].
In the TDGCM+GOA nuclear fission is modeled as

a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i!
∂g(q, t)

∂t
= Ĥcoll(q)g(q, t). (16)

The Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = −
!2

2

∑

ij

∂

∂qi
Bij(q)

∂

∂qj
+ V (q), (17)

where V (q) and Bij(q) = M−1(q) are the collective po-
tential and mass tensor, both determined by microscopic
self-consistent mean-field calculations based on universal

energy density functionals. g(q, t) is the complex wave
function of the collective variables q.
The collective space is divided into an inner region with

a single nuclear density distribution, and an external re-
gion that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (ξ, t) for a given surface element ξ
is defined as [16]

F (ξ, t) =

∫ t

t0

∫

ξ
J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
!

2i
B(q)[g∗(q, t)∇g(q, t)− g(q, t)∇g∗(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) ∝
∑

ξ∈A

lim
t→∞

F (ξ, t). (20)

The set A(ξ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.
The inertia tensor is calculated in the finite-

temperature perturbative cranking approximation [43,
48]:

MCp = !
2M−1

(1)M(3)M
−1
(1) , (21)

with

[M(k)]ij,T =
1

2

∑

µ&=ν

〈0|Q̂i|µν〉〈µν|Q̂j |0〉

{

(uµuν − vµvν)2

(Eµ − Eν)k

[

tanh

(

Eµ

2kBT

)

− tanh

(

Eν

2kBT

)]}

+
1

2

∑

µν

〈0|Q̂i|µν〉〈µν|Q̂j |0〉

{

(uµvν + uνvµ)2

(Eµ + Eν)k

[

tanh

(

Eµ

2kBT

)

+ tanh

(

Eν

2kBT

)]}

. (22)

The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-
bound states gk,

g(q, t = 0) =
∑

k

exp

(

(Ek − Ē)2

2σ2

)

gk(q), (23)

where the value of the parameter σ is set to 0.5 MeV.

The collective states {gk(q)} are solutions of the station-
ary eigenvalue equation in which the original collective
potential V (q) is replaced by a new potential V ′(q) that
is obtained by extrapolating the inner potential barrier
with a quadratic form (see Ref. [16] for details). In the
following we denote the average energy of the collective
initial state by E∗

coll., and its value will usually be cho-
sen about 1 MeV above the highest fission barrier. The
mean energy Ē in Eq. (23) is then adjusted iteratively in

The mean energy is adjusted in such a way that:
4

such a way that 〈g(t = 0)|Ĥcoll|g(t = 0)〉 = E∗
coll.. Fol-

lowing Ref. [43], the beyond mean-field corrections to the
collective potential have not been included in this work.

III. INDUCED FISSION DYNAMICS OF 226TH:
RESULTS AND DISCUSSION

As in our first illustrative application of the
TDGCM+GOA framework to a description of induced
fission dynamics [41], we consider the case of 226Th
and analyze the temperature dependence of fission bar-
riers, perturbative cranking inertia tensors, and dis-
tribution of charge and mass yields. In the present
study the collective coordinates are the axially sym-
metric quadrupole deformation parameter β20 and oc-
tupole deformation parameter β30. The starting point is
a large-scale deformation-constrained finite-temperature
self-consistent RMF+BCS calculation of the potential
energy surface and single-nucleon wave functions. In
the particle-hole channel we employ the relativistic en-
ergy functional DD-PC1 [53]. As noted in Sec. II, the
parameters of the finite range separable pairing force
were originally adjusted to reproduce the pairing gap at
the Fermi surface in symmetric nuclear matter as cal-
culated with the Gogny D1S force. However, a number
of RMF-based studies have shown that in finite nuclei
the strength parameters of this force need to be fine-
tuned, especially for heavy nuclei [56, 57]. Here the
strengths have been adjusted to reproduce the empirical
pairing gaps of 226Th. The assumption is that the fis-
sioning nucleus is in thermal equilibrium at temperature
T . The self-consistent RMF+BCS calculation provides
a deformation energy surface F (q), and variations of the
free energy between two points q1 and q2 are given by
δF |T = F (q1, T )−F (q2, T ) [44]. The internal excitation
energy E∗

int. of a nucleus at temperature T is defined as
the difference between the total binding energy of the
equilibrium RMF+BCS minimum at temperature T and
at T = 0.
In a second step the computer code FELIX (version

2.0) [16] is used for the TDGCM+GOA time evolu-
tion. The time step is δt = 5 × 10−4 zs. The charge
and mass distributions are calculated after 2× 105 time
steps, corresponding to 100 zs. The scission configura-
tions are defined by using the Gaussian neck operator
Q̂N = exp[−(z − zN)2/a2N ], where aN = 1 fm and zN is
the position of the neck [58]. We define the pre-scission
domain by 〈Q̂N 〉 > 2 and consider the frontier of this
domain as the scission contour. Just as in our pervi-
ous study of Ref. [41], the parameters of the additional
imaginary absorption potential that takes into account
the escape of the collective wave packet in the domain
outside the region of calculation [16] are: the absorption
rate r = 20× 1022 s−1, and the width of the absorption
band w = 1.5. Following Ref. [18], the fission yields are
obtained by convoluting the raw flux with a Gaussian
function of the number of particles. The width is set to

FIG. 1. (Color online) Free energy (in MeV) along the least-
energy fission pathway in 226Th for finite temperatures T =
0.0, 0.5, 0.75, 1.0, 1.25 MeV. All curves are normalized to their
values at equilibrium minimum.

FIG. 2. (Color online) Evolution of the first (BI), second
(BII), and third (BIII) barrier heights in the free energy of
226Th, as functions of temperature.

4 units for the mass yields, and 1.6 for the charge yields.

A. Temperature-dependent fission barriers and
interia tensors

Figure 1 displays the free energy of 226Th along the
least-energy fission pathway for temperatures ranging be-
tween zero and 1.25 MeV. The heights of the fission bar-
riers as functions of temperature T are plotted in Fig. 2.
At T = 0 the mean-field equilibrium state is located at
(β20,β30) ∼ (0.20, 0.15). Similar to the results obtained
with the functional PC-PK1 [59] in Ref. [41], a triple-

Pre-neutron emission charge yields for 
photo-induced fission of 226Th. 



    Induced Fission - Finite Temperature Effects



    Finite temperature effects:

3

The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
@t

= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (17)

where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]

F (⇠, t) =

Z
t

t0

Z

⇠

J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
~
2i
B(q)[g⇤(q, t)rg(q, t)� g(q, t)rg⇤(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) /
X

⇠2A
lim
t!1

F (⇠, t). (20)

The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X
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exp

✓
(Ek � Ē)2

2�2

◆
gk(q), (23)
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The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
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= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads
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where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]
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mass number A.
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,
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The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,
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The collective Hamiltonian Ĥcoll(q) reads
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where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]
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where J(q, t) is the current
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The yield for the fission fragment with mass A is defined
by
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The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:
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with
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,
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gk(q), (23)

Helmholtz free energy:
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Gogny functionals [48]. The effect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature T , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
ator Ô is given by an ensemble average

〈Ô〉 = Tr [D̂Ô], (1)

where D̂ is the density operator:

D̂ =
1

Z
e−β(Ĥ−λN̂) . (2)

Z is the grand partition function, β = 1/kBT with the
Boltzmann constant kB, Ĥ is the Hamiltonian of the sys-
tem, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

ĥψk(r) = εkψk(r), (3)

is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read

S = αS(ρ)ρS + δS#ρS ,

V0 = αV (ρ)ρV + αTV (ρ)(ρTV · (τ + e
1− τ3

2
A0,

ΣR =
1

2

∂αS

∂ρ
ρ2S +

1

2

∂αV

∂ρ
ρ2V +

1

2

∂αTV

∂ρ
ρ2TV , (5)

respectively. M is the nucleon mass, αS(ρ), αV (ρ),
and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
the following relations:

ρS =
∑

k

ψ̄k(r)ψk(r)[v
2
k(1− fk) + u2

kfk], (6)

ρV =
∑

k

ψ̄k(r)γ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (7)

ρTV =
∑

k

ψ̄k(r)(τγ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (8)

where fk is the thermal occupation probability of a quasi-
particle state

fk =
1

1 + eβEk

, (9)

and β = 1/kBT . Ek = [(εk − λ)2 +∆2
k]

1/2 is the quasi-
particle energy, and λ is the Fermi level. v2k are the BCS
occupation probabilities

v2k =
1

2

(

1−
εk − λ

Ek

)

, (10)

and u2
k = 1− v2k. The gap equation at finite temperature

reads

∆k =
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2
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k′>0

V pp
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(1 − 2f ′
k). (11)

In the particle-particle channel we use a separable pairing
force of finite range [54]:

V (r1, r2, r
′
1, r

′
2) = G0 δ(R −R

′)P (r)P (r′)
1

2
(1− P σ) ,

(12)
where R = (r1+r2)/2 and r = r1−r2 denote the center-
of-mass and the relative coordinates, respectively. P (r)
reads

P (r) =
1

(4πa2)3/2
e−r

2/4a2

. (13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:

S = −kB
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)] . (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation effects is the Helmholtz

… entropy of the compound nuclear system:
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Gogny functionals [48]. The effect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature T , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
ator Ô is given by an ensemble average

〈Ô〉 = Tr [D̂Ô], (1)

where D̂ is the density operator:

D̂ =
1

Z
e−β(Ĥ−λN̂) . (2)

Z is the grand partition function, β = 1/kBT with the
Boltzmann constant kB, Ĥ is the Hamiltonian of the sys-
tem, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

ĥψk(r) = εkψk(r), (3)

is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read
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respectively. M is the nucleon mass, αS(ρ), αV (ρ),
and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
the following relations:

ρS =
∑
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where fk is the thermal occupation probability of a quasi-
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1
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, (9)

and β = 1/kBT . Ek = [(εk − λ)2 +∆2
k]

1/2 is the quasi-
particle energy, and λ is the Fermi level. v2k are the BCS
occupation probabilities
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of-mass and the relative coordinates, respectively. P (r)
reads

P (r) =
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(4πa2)3/2
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. (13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:
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The thermodynamical potential relevant for an analysis
of finite-temperature deformation effects is the Helmholtz
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Gogny functionals [48]. The effect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.

II. THE METHOD

Assuming that the compound nucleus is in a state of
thermal equilibrium at temperature T , it can be de-
scribed by the finite temperature (FT) Hartree-Fock-
Bogoliubov (HFB) theory [42, 52]. In the grand-
canonical ensemble, the expectation value of any oper-
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Z is the grand partition function, β = 1/kBT with the
Boltzmann constant kB, Ĥ is the Hamiltonian of the sys-
tem, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. In the present study we employ
the relativistic mean-field (RMF) model for the particle-
hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation

ĥψk(r) = εkψk(r), (3)

is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
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respectively. M is the nucleon mass, αS(ρ), αV (ρ),
and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
the following relations:
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justed to reproduce the density dependence of the pair-
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with the D1S parameterization of the Gogny force [13].
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puted using the relation:

S = −kB
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)] . (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation effects is the Helmholtz

2

Gogny functionals [48]. The effect of FT on perturbative
cranking inertia tensors has also been investigated in the
FT-HFB framework [43, 48]. Exploratory studies of FT
effects on induced fission yield distributions using semi-
classical approaches have been reported in Refs. [49–51].
In this work we present the first microscopic investigation
of finite temperature effects on induced fission dynamics
using the TDGCM+GOA collective model. The theo-
retical framework and method are introduced in Sec. II.
The details of the calculation for the illustrative example
of 226Th, the results for deformation energy landscapes,
inertia tensor, as well as the charge and mass yield dis-
tributions are described and discussed in Sec. III. Sec. IV
contains a summary of the principal results.
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hole channel, while pairing correlations are treated in the
BCS approximation. The Dirac single-nucleon equation
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is determined by the Hamiltonian

ĥ = α · p+ β[M + S(r)] + V0(r) + ΣR(r), (4)

where, for the relativistic energy-density functional DD-
PC1 [53], the scalar potential, vector potential, and re-
arrangement terms read

S = αS(ρ)ρS + δS#ρS ,

V0 = αV (ρ)ρV + αTV (ρ)(ρTV · (τ + e
1− τ3

2
A0,

ΣR =
1

2

∂αS

∂ρ
ρ2S +

1

2

∂αV

∂ρ
ρ2V +

1

2

∂αTV

∂ρ
ρ2TV , (5)

respectively. M is the nucleon mass, αS(ρ), αV (ρ),
and αTV (ρ) are density-dependent couplings for differ-
ent space-isospace channels, δS is the coupling constant
of the derivative term, and e is the electric charge. In the

finite-temperature RMF+BCS approximation the single-
nucleon densities ρS (scalar-isoscalar density), ρV (time-
like component of the isoscalar current), and ρTV (time-
like component of the isovector current), are defined by
the following relations:

ρS =
∑

k

ψ̄k(r)ψk(r)[v
2
k(1− fk) + u2

kfk], (6)

ρV =
∑

k

ψ̄k(r)γ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (7)

ρTV =
∑

k

ψ̄k(r)(τγ
0ψk(r)[v

2
k(1− fk) + u2

kfk], (8)

where fk is the thermal occupation probability of a quasi-
particle state

fk =
1

1 + eβEk

, (9)

and β = 1/kBT . Ek = [(εk − λ)2 +∆2
k]

1/2 is the quasi-
particle energy, and λ is the Fermi level. v2k are the BCS
occupation probabilities

v2k =
1

2

(

1−
εk − λ

Ek

)

, (10)

and u2
k = 1− v2k. The gap equation at finite temperature

reads

∆k =
1

2

∑

k′>0

V pp
kk̄k′k̄′

∆k′

Ek′

(1 − 2f ′
k). (11)

In the particle-particle channel we use a separable pairing
force of finite range [54]:

V (r1, r2, r
′
1, r

′
2) = G0 δ(R −R

′)P (r)P (r′)
1

2
(1− P σ) ,

(12)
where R = (r1+r2)/2 and r = r1−r2 denote the center-
of-mass and the relative coordinates, respectively. P (r)
reads

P (r) =
1

(4πa2)3/2
e−r

2/4a2

. (13)

The two parameters of the interaction were originally ad-
justed to reproduce the density dependence of the pair-
ing gap in nuclear matter at the Fermi surface calculated
with the D1S parameterization of the Gogny force [13].
The entropy of the compound nuclear system is com-

puted using the relation:

S = −kB
∑

k

[fk ln fk + (1 − fk) ln(1 − fk)] . (14)

The thermodynamical potential relevant for an analysis
of finite-temperature deformation effects is the Helmholtz
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The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
@t

= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (17)

where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]

F (⇠, t) =

Z
t

t0

Z

⇠

J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
~
2i
B(q)[g⇤(q, t)rg(q, t)� g(q, t)rg⇤(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) /
X

⇠2A
lim
t!1

F (⇠, t). (20)

The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:

MCp = ~2M�1
(1)M(3)M

�1
(1) , (21)

with

[M(k)]ij,T =
1

2

X

µ 6=⌫

h0|Q̂i|µ⌫ihµ⌫|Q̂j |0i
⇢
(uµu⌫ � vµv⌫)2

(Eµ � E⌫)k


tanh

✓
Eµ

2kBT

◆
� tanh

✓
E⌫

2kBT

◆��

+
1

2

X

µ⌫

h0|Q̂i|µ⌫ihµ⌫|Q̂j |0i
⇢
(uµv⌫ + u⌫vµ)2

(Eµ + E⌫)k


tanh

✓
Eµ

2kBT

◆
+ tanh

✓
E⌫

2kBT

◆��
. (22)

The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X

k

exp

✓
(Ek � Ē)2

2�2

◆
gk(q), (23)

Perturbative cranking mass tensor:
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The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
@t

= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (17)

where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]

F (⇠, t) =

Z
t

t0

Z

⇠

J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
~
2i
B(q)[g⇤(q, t)rg(q, t)� g(q, t)rg⇤(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) /
X

⇠2A
lim
t!1

F (⇠, t). (20)

The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:

MCp = ~2M�1
(1)M(3)M

�1
(1) , (21)

with

[M(k)]ij,T =
1

2

X

µ 6=⌫

h0|Q̂i|µ⌫ihµ⌫|Q̂j |0i
⇢
(uµu⌫ � vµv⌫)2

(Eµ � E⌫)k


tanh

✓
Eµ

2kBT

◆
� tanh

✓
E⌫

2kBT

◆��

+
1

2

X
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h0|Q̂i|µ⌫ihµ⌫|Q̂j |0i
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(uµv⌫ + u⌫vµ)2

(Eµ + E⌫)k


tanh

✓
Eµ

2kBT

◆
+ tanh

✓
E⌫

2kBT

◆��
. (22)

The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X

k

exp

✓
(Ek � Ē)2

2�2

◆
gk(q), (23)
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The entropy of the nuclear system is calculated using
the relation:

S = �kB
X

k

[fk ln fk + (1� fk) ln(1� fk)] . (14)

The thermodynamical potential relevant to study finite-
temperature deformation e↵ects is the Helmholtz free en-
ergy F = E(T ) � TS, computed at constant volume V
and temperature T [44]. E(T ) is the binding energy of
the deformed nucleus, and the deformation-dependent
energy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Q�µ = r�Y�µ. The nuclear
shape is parameterized by the deformation parameters

��µ =
4⇡

3AR�
hQ�µi. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters ��µ

with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [54]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].

In the TDGCM+GOA nuclear fission is modeled as
a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i~@g(q, t)
@t

= Ĥcoll(q)g(q, t). (16)

The collective Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = �~2
2

X

ij

@

@qi
Bij(q)

@

@qj
+ V (q), (17)

where V (q) and Bij(q) = M�1(q) are the collective po-
tential and mass tensor, both determined by microscopic

self-consistent mean-field calculations based on universal
energy density functionals. g(q, t) is the complex wave
function of the collective variables q.

The collective space is divided into the inner region
with a single nuclear density distribution, and an external
region that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (⇠, t) for a given surface element ⇠
is defined as [16]

F (⇠, t) =

Z
t

t0

Z

⇠

J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
~
2i
B(q)[g⇤(q, t)rg(q, t)� g(q, t)rg⇤(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) /
X

⇠2A
lim
t!1

F (⇠, t). (20)

The set A(⇠) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.

The inertia tensor is calculated in the finite-
temperature perturbative cranking approximation [43,
48]:

MCp = ~2M�1
(1)M(3)M

�1
(1) , (21)

with

[M(k)]ij,T =
1

2

X

µ 6=⌫

h0|Q̂i|µ⌫ihµ⌫|Q̂j |0i
⇢
(uµu⌫ � vµv⌫)2

(Eµ � E⌫)k
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Eµ
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+ tanh
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The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-

bound states gk,

g(q, t = 0) =
X

k

exp

✓
(Ek � Ē)2

2�2

◆
gk(q), (23)

… the initial state is a Gaussian superposition of quasibound states: 
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free energy F = E(T )− TS, evaluated at constant tem-
perature T [44]. E(T ) is the binding energy of the
deformed nucleus, and the deformation-dependent en-
ergy landscape is obtained in a self-consistent finite-
temperature mean-field calculation with constraints on
the mass multipole moments Qλµ = rλYλµ. The nuclear
shape is parameterized by the deformation parameters

βλµ =
4π

3ARλ
〈Qλµ〉. (15)

The shape is assumed to be invariant under the exchange
of the x and y axes, and all deformation parameters βλµ
with even µ can be included simultaneously. The self-
consistent RMF+BCS equations are solved by an expan-
sion in the axially deformed harmonic oscillator (ADHO)
basis [55]. In the present study calculations have been
performed in an ADHO basis truncated to Nf = 20 os-
cillator shells. For details of the MDC-RMF model we
refer the reader to Ref. [34].
In the TDGCM+GOA nuclear fission is modeled as

a slow adiabatic process driven by only a few collective
degrees of freedom [18]. The dynamics is described by
a local, time-dependent Schrödinger-like equation in the
space of collective coordinates q,

i!
∂g(q, t)

∂t
= Ĥcoll(q)g(q, t). (16)

The Hamiltonian Ĥcoll(q) reads

Ĥcoll(q) = −
!2

2

∑

ij

∂

∂qi
Bij(q)

∂

∂qj
+ V (q), (17)

where V (q) and Bij(q) = M−1(q) are the collective po-
tential and mass tensor, both determined by microscopic
self-consistent mean-field calculations based on universal

energy density functionals. g(q, t) is the complex wave
function of the collective variables q.
The collective space is divided into an inner region with

a single nuclear density distribution, and an external re-
gion that contains the two fission fragments. The set
of scission configurations defines the hyper-surface that
separates the two regions. The flux of the probability
current through this hyper-surface provides a measure of
the probability of observing a given pair of fragments at
time t. Each infinitesimal surface element is associated
with a given pair of fragments (AL, AH), where AL and
AH denote the lighter and heavier fragment, respectively.
The integrated flux F (ξ, t) for a given surface element ξ
is defined as [16]

F (ξ, t) =

∫ t

t0

∫

ξ
J(q, t) · dS, (18)

where J(q, t) is the current

J(q, t) =
!

2i
B(q)[g∗(q, t)∇g(q, t)− g(q, t)∇g∗(q, t)].

(19)
The yield for the fission fragment with mass A is defined
by

Y (A) ∝
∑

ξ∈A

lim
t→∞

F (ξ, t). (20)

The set A(ξ) contains all elements belonging to the scis-
sion hyper-surface such that one of the fragments has
mass number A.
The inertia tensor is calculated in the finite-

temperature perturbative cranking approximation [43,
48]:

MCp = !
2M−1

(1)M(3)M
−1
(1) , (21)

with

[M(k)]ij,T =
1

2

∑
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〈0|Q̂i|µν〉〈µν|Q̂j |0〉

{
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2kBT
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− tanh

(

Eν
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)]}

+
1

2
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[

tanh
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)

+ tanh

(
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. (22)

The starting point of the dynamical calculation is the
choice of the collective wave packet g(q, t = 0). We build
the initial state as a Gaussian superposition of the quasi-
bound states gk,

g(q, t = 0) =
∑

k

exp

(

(Ek − Ē)2

2σ2

)

gk(q), (23)

where the value of the parameter σ is set to 0.5 MeV.

The collective states {gk(q)} are solutions of the station-
ary eigenvalue equation in which the original collective
potential V (q) is replaced by a new potential V ′(q) that
is obtained by extrapolating the inner potential barrier
with a quadratic form (see Ref. [16] for details). In the
following we denote the average energy of the collective
initial state by E∗

coll., and its value will usually be cho-
sen about 1 MeV above the highest fission barrier. The
mean energy Ē in Eq. (23) is then adjusted iteratively in

The mean energy is adjusted in such a way that:

4

such a way that 〈g(t = 0)|Ĥcoll|g(t = 0)〉 = E∗
coll.. Fol-

lowing Ref. [43], the beyond mean-field corrections to the
collective potential have not been included in this work.

III. INDUCED FISSION DYNAMICS OF 226TH:
RESULTS AND DISCUSSION

As in our first illustrative application of the
TDGCM+GOA framework to a description of induced
fission dynamics [41], we consider the case of 226Th
and analyze the temperature dependence of fission bar-
riers, perturbative cranking inertia tensors, and dis-
tribution of charge and mass yields. In the present
study the collective coordinates are the axially sym-
metric quadrupole deformation parameter β20 and oc-
tupole deformation parameter β30. The starting point is
a large-scale deformation-constrained finite-temperature
self-consistent RMF+BCS calculation of the potential
energy surface and single-nucleon wave functions. In
the particle-hole channel we employ the relativistic en-
ergy functional DD-PC1 [53]. As noted in Sec. II, the
parameters of the finite range separable pairing force
were originally adjusted to reproduce the pairing gap at
the Fermi surface in symmetric nuclear matter as cal-
culated with the Gogny D1S force. However, a number
of RMF-based studies have shown that in finite nuclei
the strength parameters of this force need to be fine-
tuned, especially for heavy nuclei [56, 57]. Here the
strengths have been adjusted to reproduce the empirical
pairing gaps of 226Th. The assumption is that the fis-
sioning nucleus is in thermal equilibrium at temperature
T . The self-consistent RMF+BCS calculation provides
a deformation energy surface F (q), and variations of the
free energy between two points q1 and q2 are given by
δF |T = F (q1, T )−F (q2, T ) [44]. The internal excitation
energy E∗

int. of a nucleus at temperature T is defined as
the difference between the total binding energy of the
equilibrium RMF+BCS minimum at temperature T and
at T = 0.
In a second step the computer code FELIX (version

2.0) [16] is used for the TDGCM+GOA time evolu-
tion. The time step is δt = 5 × 10−4 zs. The charge
and mass distributions are calculated after 2× 105 time
steps, corresponding to 100 zs. The scission configura-
tions are defined by using the Gaussian neck operator
Q̂N = exp[−(z − zN)2/a2N ], where aN = 1 fm and zN is
the position of the neck [58]. We define the pre-scission
domain by 〈Q̂N 〉 > 2 and consider the frontier of this
domain as the scission contour. Just as in our pervi-
ous study of Ref. [41], the parameters of the additional
imaginary absorption potential that takes into account
the escape of the collective wave packet in the domain
outside the region of calculation [16] are: the absorption
rate r = 20× 1022 s−1, and the width of the absorption
band w = 1.5. Following Ref. [18], the fission yields are
obtained by convoluting the raw flux with a Gaussian
function of the number of particles. The width is set to

FIG. 1. (Color online) Free energy (in MeV) along the least-
energy fission pathway in 226Th for finite temperatures T =
0.0, 0.5, 0.75, 1.0, 1.25 MeV. All curves are normalized to their
values at equilibrium minimum.

FIG. 2. (Color online) Evolution of the first (BI), second
(BII), and third (BIII) barrier heights in the free energy of
226Th, as functions of temperature.

4 units for the mass yields, and 1.6 for the charge yields.

A. Temperature-dependent fission barriers and
interia tensors

Figure 1 displays the free energy of 226Th along the
least-energy fission pathway for temperatures ranging be-
tween zero and 1.25 MeV. The heights of the fission bar-
riers as functions of temperature T are plotted in Fig. 2.
At T = 0 the mean-field equilibrium state is located at
(β20,β30) ∼ (0.20, 0.15). Similar to the results obtained
with the functional PC-PK1 [59] in Ref. [41], a triple-
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FIG. 3. Temperature dependence of the pairing energy in the
RMF+BCS equilibrium minimum, in the fission isomer, and at the
top of the first and second barriers in 226Th.

contour at various temperatures displays similar patterns, that
is, it starts from an elongated symmetric point at β20 ∼ 5.5,
and evolves to a minimal elongation β20 ∼ 3.0 as asymmetry
increases.

For the two-dimensional space of collective deformation
coordinates three independent components M11, M12, and

FIG. 4. Free energy F of 226Th in the (β20,β30 ) plane for finite
temperatures T = 0.0, 0.5, 0.75, 1.0, and 1.25 MeV. In each panel
energies are normalized with respect to the corresponding value at
the equilibrium minimum, and contours join points on the surface
with the same energy (in MeV). The energy surfaces are calculated
with the relativistic density functionals DD-PC1 [54], and the pairing
interaction Eq. (12). The contour interval is 1.0 MeV.

FIG. 5. The M11 component of the mass tensor of 226Th as
function of the quadrupole deformation β20 (top panel), and the
M22 component as function of the octupole deformation β30 (bottom
panel) for finite temperatures T = 0.0, 0.75, 1.0, and 1.25 MeV.

M22 determine the mass tensor. In the present case the indices
1 and 2 refer to the β20 and β30 degrees of freedom, respec-
tively. In Fig. 5 the evolution of the M11 component of the
collective mass with the quadrupole deformation parameter
β20, and the M22 component as function of the octupole
deformation β30, are shown for different temperatures. One
first notices that M11 exhibits more oscillations that reflect
the complex underlying structure of level crossings, while
M22 displays a smooth behavior as a function of octupole
deformation at T = 0. In the interval T = 0 ∼ 0.75 MeV both
components generally increase with temperature, due to the
weakening of pairing correlations and reduction of pairing
gaps for T > 0 MeV. Note that in the first approximation the
effective collective mass M ∝ !−2, where ! is the pairing
gap [61]. After the pairing phase transition has occurred M11
and M22 decrease as a consequence of the weakening of shell
effects, except for rather large values at the spherical shape.
A similar behavior was also observed in studies based on
nonrelativistic Skyrme [44] and Gogny functionals [49].
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Charge yields:

Experimental results ➠ photoinduced fission with 
photon energies in the interval 8 − 14 MeV, and a 
peak value E𝜸 = 11 MeV.

Dynamics of induced fission Zhao, Nikšić, Vretenar, Zhou 
Phys. Rev. C 99, 014618 (2019).

T = 0.5, 0.75, 1.0, and 1.25 MeV ➠ corresponding 
internal excitation energies E∗ are: 2.58, 8.71, 
16.56, and 27.12 MeV, respectively. 



*The temperature is adjusted so that the intrinsic excitation energy corresponds to the experimental exc. energy.  

*

Zhao, Xiang, Li, Nikšić, Vretenar, Zhou 
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SCMF deformation energy surface ➠ constraints on the mass multipole moments and the particle-number 
dispersion operator: 
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dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
experimental masses of neighboring nuclei, reduces the
asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
future studies.

II. THE TDGCM+GOA METHOD

In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
tion provides the microscopic input, that is, the single-
quasiparticle states, energies, and occupation factors,
that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie↵er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
present study [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
with constraints on mass multipole moments Q�µ =
r
�
Y�µ, and the particle-number dispersion operator

�N̂
2 = N̂

2�hN̂i2. The Routhian is therefore defined as
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where ERMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers �2⌧ (⌧ = n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
consider isoscalar dynamical pairing; �2n = �2p ⌘ �2 is
employed as the collective coordinate.
The dynamics of the fission process is governed by a

local, time-dependent Schrödinger-like equation in the
space of collective coordinates q. The collective Hamil-
tonian Ĥcoll(q)
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determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.
Bij(q) and V (q) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole �2 and octupole �3 defor-
mation parameters, and the dynamical pairing coordi-
nate �2. The inertia tensor is the inverse of the mass
tensor, that is, Bij(q) = (M�1)ij(q). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
proximation [39]:
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U and V are the self-consistent Bogoliubov matrices,
and ⇢ and  are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
ing mass tensor:
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dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
experimental masses of neighboring nuclei, reduces the
asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
future studies.

II. THE TDGCM+GOA METHOD

In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
tion provides the microscopic input, that is, the single-
quasiparticle states, energies, and occupation factors,
that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie↵er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
present study [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
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r
�
Y�µ, and the particle-number dispersion operator

�N̂
2 = N̂

2�hN̂i2. The Routhian is therefore defined as

E
0 = ERMF +

X

�µ

1

2
C�µQ�µ + �2�N̂

2
, (1)

where ERMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers �2⌧ (⌧ = n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
consider isoscalar dynamical pairing; �2n = �2p ⌘ �2 is
employed as the collective coordinate.
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determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.
Bij(q) and V (q) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole �2 and octupole �3 defor-
mation parameters, and the dynamical pairing coordi-
nate �2. The inertia tensor is the inverse of the mass
tensor, that is, Bij(q) = (M�1)ij(q). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
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U and V are the self-consistent Bogoliubov matrices,
and ⇢ and  are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
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dynamics of the final stage of the fission process, from
configurations close to the outer fission barrier to full
scission.

The influence of ground-state (static) pairing correla-
tions on charge yields and total kinetic energy of fission
fragments for the case of induced fission of 226Th iso-
tope was analyzed in Ref. [17] using the TDGCM+GOA
framework. It has been shown that an increase of the
strength of the pairing interaction, beyond the range de-
termined by empirical pairing gaps obtained from the
experimental masses of neighboring nuclei, reduces the
asymmetric peaks and enhances the symmetric peak in
charge yields distribution. This is a very interesting re-
sult, and thus it is important to explore dynamical pair-
ing correlations in induced fission. In this work we ex-
plicitly include the isoscalar pairing degree of freedom in
the space of TDGCM+GOA collective coordinates, and
perform the first realistic three-dimensional calculation
of induced fission of 228Th. The theoretical framework
and methods are reviewed in Sec. II. The details of the
calculation and principal results are discussed in Sec. III.
Section IV contains a short summary and outlook for
future studies.

II. THE TDGCM+GOA METHOD

In the TDGCM+GOA framework induced fission is
described as a slow adiabatic process determined by a
small number of collective degrees of freedom. The ini-
tial step in modeling the fission of a heavy nucleus is
a self-consistent mean-field (SCMF) calculation of the
corresponding deformation energy surface as a function
of few selected collective coordinates. Such a calcula-
tion provides the microscopic input, that is, the single-
quasiparticle states, energies, and occupation factors,
that determine the parameters of a local equation of mo-
tion for the collective wave function.

The theoretical framework and specific model have
been detailed in our previous studies [17–20]. For com-
pleteness, here we include a short outline and discuss
in more detail the specific points that arise when con-
sidering pairing as a collective degree of freedom. The
relativistic energy density functional DD-PC1 [32] is em-
ployed in the particle-hole channel, while pairing corre-
lations are taken into account in the Bardeen-Cooper-
Schrie↵er (BCS) approximation by a separable pairing
force of finite range [33]. The parameters of the pairing
interaction have been adjusted to reproduce the empir-
ical pairing gaps in the mass region considered in the
present study [19].

The self-consistent deformation energy surfaces are cal-
culated using the multidimensionally constrained rela-
tivistic mean-field (MDC-RMF) model [16, 21, 34, 35]
with constraints on mass multipole moments Q�µ =
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Y�µ, and the particle-number dispersion operator
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where ERMF denotes the total RMF energy that includes
static BCS pairing correlations. The amount of dynamic
pairing correlations can be controlled by the Lagrange
multipliers �2⌧ (⌧ = n, p), [16, 25, 36, 37]. To reduce
the number of collective degrees of freedom and, there-
fore, the considerable computational task, here we only
consider isoscalar dynamical pairing; �2n = �2p ⌘ �2 is
employed as the collective coordinate.
The dynamics of the fission process is governed by a
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determines the time-evolution of the nuclear wave func-
tion from an initial state at equilibrium deformation,
up to scission and the formation of fission fragments.
Bij(q) and V (q) denote the inertia tensor and collec-
tive potential, respectively, that are computed using the
self-consistent solutions for the RMF+BCS deformation
energy surface. Here we assume axial symmetry with
respect to the axis along which the two fragments even-
tually separate, and consider the three-dimensional (3D)
collective space of quadrupole �2 and octupole �3 defor-
mation parameters, and the dynamical pairing coordi-
nate �2. The inertia tensor is the inverse of the mass
tensor, that is, Bij(q) = (M�1)ij(q). The mass tensor
is calculated using the adiabatic time-dependent Hartree-
Fock-Bogoliubov (ATDHFB) method in the cranking ap-
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U and V are the self-consistent Bogoliubov matrices,
and ⇢ and  are the corresponding particle and pairing
density matrices, respectively. The cranking expression
Eq. (3) can be further simplified in the perturbative ap-
proach [41–45], and this leads to the perturbative crank-
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q≡{β2,β3,λ2}

Charge yields calculated in the 3D collective space 
→ deformation β2, β3 and dynamical pairing λ2 
coordinates.  

Comparison to the results obtained in the 2D space 
of β2 and β3, with static pairing correlations adjusted 
to empirical ground-state pairing gaps (100% pairing 
strength), and enhanced (110% pairing strength). 

Effect of dynamical pairing on the flux of the probability current 
through the scission hyper-surface:

5

FIG. 3. (Color online) Perturbative cranking masses MCp
11 ,

MCp
22 , and the non-perturbative cranking mass MC

33 (in ~2
MeV

�1
) (logarithmic scale) along the static fission path for

several values of �2.

FIG. 4. (Color online) The scission controur of
228

Th in the

(�2,�3) deformation plane for several values of the collective

pairing coordinate�2 .

empirical ground-state pairing gaps in this mass region
(100%), predicts yields that are entirely dominated by
asymmetric fission with peaks at Z = 35 and Z = 55. By
increasing static pairing (110%), the asymmetric peaks
are reduced and a contribution of symmetric fission de-
velops, but not strong enough to reproduce the data. It
is interesting to notice that a very similar distribution of
charge yields is predicted by the 3D model calculation

FIG. 5. (Color online) Charge yields for induced fission of
228

Th, calculated in the 3D collective space built from the de-

formation �2, �3 and dynamical pairing �2 coordinates (solid

red curve). The yields are shown in comparison to the re-

sults obtained in the 2D space of shape degrees of freedom

�2 and �3, with static pairing correlations adjusted to empir-

ical ground-state pairing gaps (100% pairing strength), and

enhanced by ten percent (110% pairing strength). The data

for photo-induced fission correspond to photon energies in the

interval 8-14 MeV, and peak value of E� = 11 MeV [47].

that includes dynamical pairing. On a quantitative level,
even the 3D calculation does not completely reproduce
the experimental yields. The model predicts tails of the
asymmetric peaks that are not seen in experiment, and
thus fails to quantitatively match the symmetric contri-
bution. It has to be noted, however, that in the present
study the collective potential and inertia tensor have
been calculated at zero temperature. In our recent study
of finite temperature e↵ects in TDGCM+GOA [18], a
calculation of induced fission of 226Th has shown that,
although the model can qualitatively reproduce the em-
pirical triple-humped structure of the fission charge and
mass distributions already at zero temperature, the po-
sition of the asymmetric peaks and the symmetric-fission
yield can be described much better when the potential
and collective mass are determined at a temperature that
approximately corresponds to the internal excitation en-
ergy of the fissioning nucleus.
Finally, to illustrate the e↵ect of dynamical pairing on

the flux of the probability current through the scission
hyper-surface, in Fig. 7 we plot the time-integrated flux
through the scission contour in the (�2,�3) plane, for a
given value of the pairing collective coordinate �2

B(�2) /
X

⇠2B
lim
t!1

F (⇠,�2, t). (10)

The set B(⇠ ⌘ �2,�3) contains all elements of the scission
contour with a given value �2. Even though it appears
that dynamical pairing does not significantly modify the

→ time-integrated flux through the scission contour in the (β2, β3) 
plane, for a given value of the pairing collective coordinate λ2 .

static BCS 
λ2 = 0.
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Negele et al. (1978) ➠ use an adiabatic model for the time interval in which the fissioning nucleus evolves from 
the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and 
beyond-scission dynamics. 

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C (2022).
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FIG. 5. Same as in the caption to Fig. 4 but for the initial
iso-energy curve 4 MeV bellow the energy of the equilibrium
minimum.

mined before the final stage of the fission process in which
the dissipation mechanism becomes important [44]. The
TD(C)DFT reproduces the peaks of the experimental
charge yields but not the width. Only when the set of ini-
tial points on the deformation energy surface is located
much closer to the fission valley, the calculated fission
yields exhibit a structure that qualitatively resembles the
empirical charge yields. This emphasizes the importance
of quantum fluctuations that are included in the TDGCM
evolution of the collective nuclear function, but not in the
TD(C)DFT trajectories that correspond to the propaga-
tion of individual nucleons in mean-field potentials.

FIG. 6. The calculated total kinetic energies of the nascent
fragments for induced fission of 240Pu, as functions of the
fragment charge. The TDGCM and TD(C)DFT results are
shown in comparison to the data [45].

A di↵erent result is obtained for the total kinetic en-
ergy (TKE) of the fragments. In Fig. 6 we show the
TKEs of the nascent fission fragments for 240Pu, as func-
tions of the fragment charge. The theoretical values are
compared to data [45]. In the TDGCM, the total kinetic
energy for a particular pair of fragments can be evaluated

from

ETKE =
e
2
ZHZL

dch
, (19)

where e is the proton charge, ZH(ZL) the charge of the
heavy (light) fragment, and dch is the distance between
centers of charge at the point of scission. For TD(C)DFT,
the TKE at a finite distance between the fission frag-
ments (⇡ 25 fm, at which shape relaxation brings the
fragments to their equilibrium shapes) is calculated us-
ing the expression [15]

ETKE =
1

2
mAHv

2

H
+

1

2
mALv

2

L
+ ECoul, (20)

where the velocity of the fragment f = H,L reads

~vf =
1

mAf

Z

Vf

dr j(r), (21)

and j(r) is the total current density. The integration is
over the half-volume corresponding to the fragment f ,
and ECoul is the Coulomb energy.
TDGCM by definition describes non-dissipative dy-

namics and, in the adiabatic approximation, all the po-
tential energy is converted into collective kinetic energy
during the saddle-to-scission evolution. The nascent frag-
ments are cold, and the calculated TKEs are systemati-
cally too large. On the other hand, one-body dissipation
is automatically included in TD(C)DFT and, in the short
time interval it takes from the initial point to scission, the
collective flow energy is converted into intrinsic degrees
of freedom and the nucleus heats up [15]. This results in
a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of
the fragments is also converted into internal heat. It is
interesting to note that the calculated TKEs essentially
do not depend on whether we chose the initial points at
1 MeV or 4 MeV below the energy of the equilibrium
minimum.
It appears that TD(C)DFT slightly underestimates the

TKE for the fragments close to the peaks of the charge
yields distribution but predicts TKEs considerably be-
low the experimental values for the tails of the distri-
bution. Similar results for the TKE of 240Pu fragments
were also obtained in the TDDFT study of Ref. [14]. We
note that the values calculated using Eq. (20) present a
lower bound for the total kinetic energy, due to the fact
that this expression does not include the contribution of
pre-scission energy. Namely, while for the TDGCM the
average energy of the initial wave packet E

⇤
coll

is chosen
1 MeV above the fission barrier (⇡ 8 MeV for 240Pu),
all the initial points for the TDDFT calculation are on
the deformation energy surface, 1 or 4 MeV below the
energy of the equilibrium minimum. Thus, the starting
points for TDDFT trajectories are more than 10 MeV
below the ‘physical’ value. However, one cannot simply
add this di↵erence to the TKE, because part of the pre-
scission energy will be converted into excitation energy of
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the dissipation mechanism becomes important [44]. The
TD(C)DFT reproduces the peaks of the experimental
charge yields but not the width. Only when the set of ini-
tial points on the deformation energy surface is located
much closer to the fission valley, the calculated fission
yields exhibit a structure that qualitatively resembles the
empirical charge yields. This emphasizes the importance
of quantum fluctuations that are included in the TDGCM
evolution of the collective nuclear function, but not in the
TD(C)DFT trajectories that correspond to the propaga-
tion of individual nucleons in mean-field potentials.

FIG. 6. The calculated total kinetic energies of the nascent
fragments for induced fission of 240Pu, as functions of the
fragment charge. The TDGCM and TD(C)DFT results are
shown in comparison to the data [45].

A di↵erent result is obtained for the total kinetic en-
ergy (TKE) of the fragments. In Fig. 6 we show the
TKEs of the nascent fission fragments for 240Pu, as func-
tions of the fragment charge. The theoretical values are
compared to data [45]. In the TDGCM, the total kinetic
energy for a particular pair of fragments can be evaluated

from

ETKE =
e
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ZHZL

dch
, (19)

where e is the proton charge, ZH(ZL) the charge of the
heavy (light) fragment, and dch is the distance between
centers of charge at the point of scission. For TD(C)DFT,
the TKE at a finite distance between the fission frag-
ments (⇡ 25 fm, at which shape relaxation brings the
fragments to their equilibrium shapes) is calculated us-
ing the expression [15]
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where the velocity of the fragment f = H,L reads

~vf =
1

mAf

Z

Vf

dr j(r), (21)

and j(r) is the total current density. The integration is
over the half-volume corresponding to the fragment f ,
and ECoul is the Coulomb energy.
TDGCM by definition describes non-dissipative dy-

namics and, in the adiabatic approximation, all the po-
tential energy is converted into collective kinetic energy
during the saddle-to-scission evolution. The nascent frag-
ments are cold, and the calculated TKEs are systemati-
cally too large. On the other hand, one-body dissipation
is automatically included in TD(C)DFT and, in the short
time interval it takes from the initial point to scission, the
collective flow energy is converted into intrinsic degrees
of freedom and the nucleus heats up [15]. This results in
a lower TKE, as show in Fig. 6. In addition, because of
shape relaxation after scission, the deformation energy of
the fragments is also converted into internal heat. It is
interesting to note that the calculated TKEs essentially
do not depend on whether we chose the initial points at
1 MeV or 4 MeV below the energy of the equilibrium
minimum.
It appears that TD(C)DFT slightly underestimates the

TKE for the fragments close to the peaks of the charge
yields distribution but predicts TKEs considerably be-
low the experimental values for the tails of the distri-
bution. Similar results for the TKE of 240Pu fragments
were also obtained in the TDDFT study of Ref. [14]. We
note that the values calculated using Eq. (20) present a
lower bound for the total kinetic energy, due to the fact
that this expression does not include the contribution of
pre-scission energy. Namely, while for the TDGCM the
average energy of the initial wave packet E

⇤
coll

is chosen
1 MeV above the fission barrier (⇡ 8 MeV for 240Pu),
all the initial points for the TDDFT calculation are on
the deformation energy surface, 1 or 4 MeV below the
energy of the equilibrium minimum. Thus, the starting
points for TDDFT trajectories are more than 10 MeV
below the ‘physical’ value. However, one cannot simply
add this di↵erence to the TKE, because part of the pre-
scission energy will be converted into excitation energy of

→ distance between centers of charge at the point of scission. 
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
CpCn

(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-

sity gradient, respectively. ⌧TF
q� = 3
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Thomas-Fermi kinetic energy density.
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total

p
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-
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and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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for the spin � (" or #) and isospin q (n or p) quantum
numbers. ⇢q�, ⌧q�, ~jq�, and ~r⇢q� denote the nucleon
density, kinetic energy density, current density, and den-
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q� , the second
and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
for which all four nucleon localization functions Cq� ⇡ 1.
The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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scission, the system at scission is treated as a micro-
canonical ensemble where all available configurations are
equiprobable. The random neck rupture model relies on a
sequence of instabilities [21], and assumes that the neck
snaps at some random points along its length. In mi-
croscopic approaches, both geometrical and dynamical
definitions of the scission configuration have been con-
sidered. Geometrical definitions include the criterion of
vanishing density between the fragments, and the expec-
tation value of a neck operator that gives a measure of
the number of particles in the neck [22]. In a dynam-
ical approach, the scission configuration can be defined
in terms of the ratio of the nuclear and Coulomb inter-
action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
pre-fragments [24].

In this work, the dynamics of neck formation and
nuclear scission is studied within the TDDFT frame-
work. For the details of the particular implementation
of TDDFT that we employ to model induced fission, we
refer the reader to the supplemental material (SM).

In the left panel of Fig. 1, we display the self-consistent
deformation energy surface of 240Pu. It is calculated
with the relativistic energy density functional PC-PK1
[25] and a monopole pairing interaction (cf. SM for de-
tails), and shown as function of the two collective coor-
dinates: the axial quadrupole (�20) and octupole (�30)
deformation parameters, that correspond to the nuclear
elongation and mass asymmetry, respectively. The equi-
librium minimum is located at �20 ⇡ 0.3 and �30 = 0,
and it appears slightly soft in the octupole direction. We
also note the isomeric minimum at �20 ⇡ 0.9 and �30 = 0,
as well as the two fission barriers, and the fission valley
at large deformations.

The dots in the left panel of Fig. 1 denote three charac-
teristic initial points on the energy surface for calculation
of fission trajectories. Since TDDFT e↵ectively describes
the classical evolution of independent nucleons in self-
consistent mean-field potentials, this approach cannot be
applied to fission dynamics in the classically forbidden
region of the collective space [9, 11, 12, 14]. The initial
point for the TDDFT evolution is usually taken below the
outer barrier [17, 26], and the three points shown in the
left panel of Fig. 1 correspond to energies approximately
1 MeV below the equilibrium minimum. Given the initial
single-nucleon quasiparticle wave functions and occupa-
tion probabilities, TDDFT models a single fission events
by propagating the nucleons independently toward scis-
sion and beyond. At each step in time the single-nucleon
Hamiltonian is determined from the time-dependent den-
sities, currents and pairing tensor (cf. SM for details)
and, therefore, the time-evolution includes the one-body
dissipation mechanism.

For the three fission trajectories, the panel on the right
of Fig. 1 displays the corresponding isodensities (in units

of fm�3) in the x-z coordinate plane, at times immedi-
ately prior to the scission event. Even though the lengths
of the fission trajectories in the collective space of de-
formation parameters are not dramatically di↵erent, the
time it takes to reach the scission configuration varies
from 1650 fm/c (trajectory 1), to 1150 fm/c (trajectory
2) and, finally, 700 fm/c (trajectory 3). The large dif-
ferences in time can be attributed to the self-consistent
potentials in which the system evolves toward scission
along the three trajectories and to dynamical pairing cor-
relations [17]. These times should be compared with the
average time-scale for the evolution of a nucleus from
the compound system in equilibrium to the formation of
fragments: (6 � 15) ⇥ 103 fm/c [27]. The isodensities in
Fig. 1 exhibit a typical mass asymmetry of the nascent
fragments, and also the low-density neck region charac-
terized by the competition between the repulsive long-
range Coulomb interaction and the short-range nuclear
attraction.
These findings are consistent with previous studies of

fission dynamics but a surprising result is obtained when,
instead of the isodensities at pre-scission times, one con-
siders the corresponding nucleon localization functions
[28, 29]:
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and third term in the numerator vanish, and Cq� = 1/2.
In the other limit Cq�(~r) ⇡ 1 indicates that the prob-
ability of finding two nucleons with the same spin and
isospin at the same point ~r is very small. This is the case
for the ↵-cluster of four particles: p ", p #, n ", and n #,
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The nucleon localization functions have been used to an-
alyze ↵-cluster structures in light nuclei [29–31], to char-
acterize shell structures of nascent fragments in fissioning
nuclei [26, 32], and cluster structures in complex precom-
pound states formed in heavy-ion fusion reactions [33].
In Fig. 2, we plot the proton Cp (left) and total
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(right) localization functions in the x-z coordinate plane
for the three fission trajectories discussed above, at times
that immediately precede scission. Here, the proton and
neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
that, while the localization functions generally exhibit
shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
region, however, values close to 1 are obtained, character-
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action energies in the neck region [23], as well as using
a quantum localization method based on the partition
of orbital wave functions into two sets belonging to the
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sion and beyond. At each step in time the single-nucleon
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neutron total localization functions are averaged over the
spin: Cq = (Cq" + Cq#)/2. In all three cases we notice
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shell structures in the fragments, their values 0.4–0.6 are
consistent with homogeneous nuclear matter. In the neck
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When are these light clusters formed? 

What is their structure? 

What is their role in the scission mechanism? Ren, Vretenar, Nikšić, Zhao, Zhao, Meng (2022)



✔ …accurate microscopic description of universal collective phenomena (fission) 
that reflect the organisation of nucleonic matter in finite nuclei.

Methods (TDGCM, TDDFT) based on the framework of universal  
Energy Density Functionals

• Finite temperature effects 

• Energy dissipation and TKE of fragments 

• Neck formation and scission mechanism 

• Ternary fission 

• Fragment angular momentum generation 

• Symmetry restoration 


