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Outline

• Heavy elements nucleosynthesis: How stars make gold (r-process) and lead (s-process)?

• Neutron-capture experiments at CERN n_TOF: Red-Giant stars in the lab

• Enhancing detection sensitivity in neutron capture TOF experiments

• What are the limits?: r-process neutron-reactions in the lab? GSI+TRIUMF+IFIC initiative

• Summary & Outlook





The origin of the elements: Making Gold (r-process) and Lead (s-process)

LRP-2024



S.J. Smartt+ 2017
D.Watson+ 2019

Origin of the Elments, Arcones&Thielemann 2023
Neutrinos and nucleosynthesis of elements, 
Fisher+ 2024
Many candidates: Collapsars, MR-SNe, etc

Heavy Elements Nucleosynthesis: 
Making Gold (r-process)

T = 108-1010 K
Nn = 1020-1027 cm-3



Most recent advanced NS-toolkit:

The r-process: all elements at once, in a few seconds

Ir, Pt, Au

By CDP with ROOT, modSN-Thermotrajectory from AA+GMP’21, 
NucNet network code, B. Meyer et al., Clemson University
FRDM+QRPA (P. Möller) + JINA Reaclib Database



The r-process: How much gold is produced in one event?

?

?

?



>10 x Planet
Earth’ weight

The r-process: How much gold is produced in one event?



Approx. 10x weight of 
Planet Earth

The r-process: Half of the abundances of heavy elements



Approx. 10x weight of 
Planet Earth

The s-process: The other half of the observed abundances





s process in Massive Stars (Red Giants) 

Massive Stars (M>8M)
core He-burning    shell C-burning 
3-3.5·108 K ~1·109 K
kT=25 keV kT=90 keV
106 cm-3 1011-1012 cm-3

22Ne(4He,n)25Mg

s process

φn  small
λβ >> λn,γ

τβ << τn,γ

= AZ(n,γ) A+1Z

The slow neutron-capture process (s-process) mechanism: Fe to Pb-Bi

Betelgeuse

Low-Mass AGB Stars 1.5 M < M < 3M

shell H-burning        He-flash
0.9·108 K 3-3.5·108 K
kT=8 keV kT=23 keV
107-108 cm-3 1010-1011 cm-3

13C(4He,n)16O         22Ne(4He,n)25Mg

Pb
Ba



Many open questions in s-process nucleosynthesis

S. Cristallo+2014

C13-pocket:
- Rotation
- Overshoot
- Magnetic Buoyancy
- Gravity Waves
Metallicity
Stellar mass
Thermal gradients

13C(4He,n)16O

A.Maeder+2012

N.Liu 2020



Pb
Ba

How does it work?

?

Experiment: neutron-capture cross sections

?

AZ(n,γ)A+1Z
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C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV, 
CERN/LHC/98-02(EET) 1998.

CERN n_TOF Collaboration: 150 scientists, 41 institutions worldwide
n_TOF + ISOLDE = 75% of PS proton Budget (!)



proton beam from the PS

The CERN n_TOF facility: recreating stellar neutron reactions in the lab

proton beam momentum 20 GeV/c

CERN PS intensity (dedicated mode) 8.5 x 1012  protons/pulse

repetition frequency 1 pulse/1.2s

pulse width 6 ns (rms)

n/p 300

lead target dimensions 80x80x60 cm3

cooling & moderation material N2 & H2O (borated)

moderator thickness in the exit face 5 cm

neutron beam dimension in EAR-1
(capture mode)

2 cm (FWHM)

Gen.#3 Spallation Target
<P> = 5.4 kW  2.2E12 p/s
Ppeak= 1.6 TW

R. Esposito, M. Calviani et al. Phys. Rev. Acc. & Beams 24 (2021)

https://doi.org/10.1103/PhysRevAccelBeams.24.093001


proton beam from the PS

The CERN n_TOF facility: recreating stellar neutron reactions in the lab

γ
Neutron 
capture 
event γ

γ Neutron beam

Sample
AX
Sample
AX(n,γ)A+1X

Horizontal flight path 
leading to EAR1 at 182.5 m
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Vertical flight path 
leading to EAR2 at 
18.2 m

The CERN n_TOF facility: recreating stellar neutron reactions in the lab

NEAR at 
3 m



What we have done at n_TOF? 

About 50% related to astrophysics



Measuring  Neutron capture on 204Tl (3.8y) to understand the 
cosmic origin of the s-only isotope 204Pb



204Pb: Calibrating AGB models &“defining” the age of our Solar System

J.N. Connelly et al. Science 338 2012
DOI: 10.1126/science.1226919

Low-Mass
AGB models

235U238U 232Th

https://doi.org/10.1126/science.1226919


203Tl (225 mg)
203Tl (216 mg)
+
204Tl (9 mg)

There is
no 204Tl 
in nature!

204Pb abundance determined by 204Tl(n,γ)

Mimicking stellar nucleosynthesis with a reactor to produce 204Tl

γ
Neutron 
capture 
event γ

γ Neutron beam

Sample
204Tl



203Tl (216 mg)
+
204Tl (9 mg)

204Tl (3.78y) neutron-capture at CERN n_TOF



204Pb abundance determined by 204Tl(n,γ)

The uncertainty arising from the 204Tl(n,𝛾𝛾) cross section on the 𝑠𝑠-process abundance of  204Pb has 
been reduced from ∼30% down to +8%/−6%, and the 𝑠𝑠-process calculations are in agreement with K. 
Lodders in 2021.

204Pb abundance of pure s-process origin:
No need for fractionation mechanisms in early Solar system
No need for invoking gamma-process contributions

G. Gonzalez 2014 M.Pignatari+ 2016

A Casanovas-Hoste et al. (n_TOF)
Physical Review Letters 133, 052702 (2024)
DOI: 10.1103/PhysRevLett.133.052702 

CI-Chondrites

Lodders, Space Sci. Rev. 217 
(2021)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.052702


Measuring  Neutron capture on 79Se (200 ky) to ‘measure’ 
temperature in Red Giant stars



79Se

2.8 g of 208Pb
1.0 g of 78Se

3 mg of 79Se
1.6 MBq of 60Co
5 MBq of 75Se

The  79Se(n,γ) stellar thermometer

s-only



γ

(n,γ)

Neutron 
capture 
event

neutron beam neutron beam
γ

(n,γ)

Background 
event

γ

(n,γ)

Background 
event

neutron beam

COMPTON IMAGING TECHNIQUE:

Fig. from H.Seo et al. IEEE-TNS, 55 (2008)

(n,n) >> (n,γ)

New techniques for enhanced sensitivity in (n,γ) cross-section experiments



Crystal read-out and electronics:

● In total: 20 Position-Sensitive Detectors
● 1150 cm3 of LaCl3(Ce)
● 1280 readout channels (4xKintex FPGA, 20xTOFPET2 ASICs, PETsys)

Final i-TED setup @ n_TOF:

• Need of very high detection efficiency  arrays of large monolithic crystals
• Need of very low neutron sensitivityCustomized design with LaCl3(Ce) and 6Li-HD-PE absorbers

Neutron absorbers based on 6Li-
enriched HD-PE: No γ-ray emission
after neutron absorption by 6Li (!)

3D- Spatial calibration techniques:

X-
axisY-axis

Z-
axis

Optical Photons simulation
P. Olleros et al. 2018 JINST13 P03014
ML-aided 3D-position reconstruction
J. Balibrea et al. NIM-A (2020)

3D keras models for the 
individual crystals

Convolutional Neural Network

V.Babiano et al, NIM-A 931 (2019)

LaCl3(Ce)
50 mm

Total-Energy Detector with g-ray imaging capability (i-TED):



Dynamic image: radioactive source in a remotely controlled XY-gantry imaged at multiple positions 

High sensitivitY Measurements of key 
stellar Nucleo-Synthesis reactions

Testing the gamma-ray vision capability of i-TED






Imaging technique:

CDP, NIM-A 825 (2016), 
V.Babiano et al. NIM-A 953 (2020)
V.Babiano-Suarez et al., EPJA, (2022)
J. Lerendegui-Marco et al., EPJWC (2023) 

EAR1
i-TED

EAR1
C6D6

VBS JLM

79Se

The  79Se(n,γ) stellar thermometer

PRELIMINARY RESULTS –
DATA ANLYSIS IN PROGRESS-

Conventional C6D6 technique:

https://doi.org/10.1016/j.nima.2016.04.002
https://doi.org/10.1016/j.nima.2019.163228
https://doi.org/10.1140/epja/s10050-021-00507-7
https://doi.org/10.1051/epjconf/202327913001
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151Sm 93Zr 63Ni 171Tm 204Tl 94Nb 79Se
Time2001 2025

Limits in (n,γ) measurements on radioactive samples: s-process branchings

151Sm
m = 200 mg
f = 0.9
σ=3b at 30keV

79Se
m = 2.7 mg
f = 7x10-4

σ=0.2 b at 30keV



TP-AGB 

Origin of heaviest
s-isotopes in SS

T in AGBs and 
in M>8M

Isotopic
anomalies in 
SiC-grains

Ni/Cu/Zn 
in M>8M

151Sm 93Zr 63Ni 171Tm 204Tl 94Nb 79Se
Time2001 2025

FOM = 1
𝑚𝑚⋅𝜎𝜎⋅𝑓𝑓

151Sm
m = 200 mg
f = 0.9
σ=3b at 30keV

79Se
m = 2.7 mg
f = 7x10-4

σ=0.2 b at 30keV
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Limits in (n,γ) measurements on radioactive samples: s-process branchings



TP-AGB 

Origin of heaviest
s-isotopes in SS

T in AGBs and 
in M>8M

Isotopic
anomalies in 
SiC-grains

Ni/Cu/Zn 
in M>8M
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Target#1 (2000-2004)

Target#2 (2008-2018)

Target#3 (2021-present)
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TOF limit:
mg – 1019 atoms
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Limits in (n,γ) measurements on radioactive samples: s-process branchings



How far are r-nuclei from direct (n, γ) measurements?

Will it be possible to measure (n,γ) 
cross sections directly on those
nuclei involved in explosive
nucleosynthesis?



How far are r-nuclei from direct (n, γ) measurements?

Vescovi+2022

128Sn (59m), 129Sn (2m) 

Mumpower+2016

Surman+2014

Important neutron-capture isotopes:



Limitations in (n,γ) measurements with conventional methods

neutron beam

Radioactive target

>1014 atoms
t1/2 = min-s
t1/2 = s-ms



Turning thins around: Direct (n,γ) measurements in inverse kinematics using neutron target!

Stored Radioactive Ion Beam
107 ions, 1 MHz, 1013 ions/s

neutron target
>108-9 n/cm2



Free-neutron target concepts

Nuclear Reactor:

neutron flux → øn = 1014 cm-2 s-1

areal neutron density → ηn = ρnx z = øn/vn * 50 cm = 2.2x1010 n·cm-2

Reaction rate = L * time * σ = 2.2E23 * 24h*3600*1E-27 cm2/mb = 20*σ[mb] (Counts/day)

Spallation Target:

Areal neutron density ηn = 8 × 109 n cm-2 (only a factor 2 < reactor)”

Reaction rate = L * time * σ = 8E22 * 24h*3600*1E-27 cm2/mb = 6.9*σ[mb]
See: Andrew L Cooper et al (2024) J. Phys.: Conf. Ser. 2743 012091 

1 µA
800 MeV



https://www.iba-radiopharmasolutions.com/cyclotrons/cycloner-key-0/

Supercompact-Cyclotron driven Neutron Target: Focus on feasibility

Lot’s of literature on CANS, see e.g. Compact Accelerator Based Neutron Sources, 
IAEA TEC DOCSeriesNo.1981(International Atomic Energy Agency, Vienna, 2021).

>130 µA
9.2 MeV



Supercompact-Cyclotron driven Neutron Target

Neutron-target “demo”:
• Cyclotron: IBA Cyclone KEY, 9.2 MeV

protons, up 130 µA current, 2.1 m2 footprint
• Moderator: D2O, 70 x 70 x 70 cm3

• Reflector: Graphite, 50 cm thick
• Cryogenic system: LH2, 20 K, 13 mm

thickness, 10 mm inner diameter
• Total size: 170 x 170 x 200 cm3

• Areal density: 3.4 x 106 n/cm2

• Where to find it? arXiv:2508.15465v1

A. Tarifeño-Saldivia et al. 
https://arxiv.org/abs/2508.15465v1

https://arxiv.org/abs/2508.15465


Cyclotron options future facility (from A. Tarifeño-Saldivia et al. arXiv:2508.15465v1)

TR-FLEX Cyclone 70

4 m

>109

https://arxiv.org/abs/2508.15465


Storage-Ring options for a future “production” facility (from A. Tarifeño-Saldivia arXiv:2508.15465v1)

See Manfred Griesser talk at ISOLDE
EPIC workshop, CERN, Geneva, 3 rd 4 th December 2019

K. Pak, B. Davids, and Y. K. Kim, Nuclear Engineering and 
Technology 57, 103392 (2025), arXiv:2312.11859 
[physics.acc-ph].

https://arxiv.org/abs/2508.15465


Summary & Outlook

Target#1 (2000-2004)

Target#2 (2008-2018)

Target#3 (2021-present)

p

p

p n

n

CDP (+n_TOF Collaboration) Eur. Phys. J. A 61, 105 (2025). 
https://doi.org/10.1140/epja/s10050-025-01563-z

https://doi.org/10.1140/epja/s10050-025-01563-z


Thanks to all funding agencies and institutions

Thanks for your attention!

Thanks to CERN n_TOF Collaborators and Gamma-Ray & Neutron Spectroscopy Group @ IFIC
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