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 Heavy elements nucleosynthesis: How stars make gold (r-process) and lead (s-process)?
* Neutron-capture experiments at CERN n_TOF: Red-Giant stars in the lab

« Enhancing detection sensitivity in neutron capture TOF experiments

« What are the limits?: r-process neutron-reactions in the lab? GSI+TRIUMF+IFIC initiative

 Summary & Outlook
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The origin of the elements: Making Gold (r-process) and Lead (s-process)
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Atomic number £

The r-process: all elements at once, in a few seconds
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The r-process: How much gold is produced in one event?
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The r-process: How much gold is produced in one event?

>10 x Planet
Earth’ weight




The r-process: Half of the abundances of heavy elements
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The s-process: The other half of the observed abundances
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SPECTROSCOPIC OBSERVATIONS OF STARS OF CLASS §
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The slow neutron-capture process (s-process) mechanism: Fe to Ph-Bi

901’ small s process in Massive Stars (Red Giants)
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Many open questions in s-process nucleosynthesis
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How does it work?

Abundance

eriment: neutron-capture cross sections
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Neutron-capture experiments at CERN n_TOF: Red-Giant stars in the lab
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The CERN accelerator complex
CERN Complexe des accélérateurs du CERN

Neutrino
Platform

LHC
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- MEDICIS
ISOLDE
[ ,
REX/HIE- ' East Area :
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: /-i—C ;
< g
. CLEAR
’ 1

2005 (78 m)

C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV,
CERN/LHC/98-02(EET) 1998.
CERN n_TOF Collaboration: 150 scientists, 41 institutions worldwide
n_TOF + ISOLDE = 75% of PS proton Budget (!)




@ The CERN n_TOF facility: recreating stellar neutron reactions in the lab m
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https://doi.org/10.1103/PhysRevAccelBeams.24.093001

@ The CERN n_TOF facility: recreating stellar neutron reactions in the lab m
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@ The CERN n_TOF facility: recreating stellar neutron reactions in the lab m
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@) What we have done at n_TOF? TR

Radiative capture reactions (n,) The n_TOF Collaboration list of publications:
Hission reactions [n,) https://twiki.cern.ch/NTOFPublic/ListOfPublications
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https://doi.org/10.1126/science.1226919

D) 204ph abundance determined by 2%4Ti(n,7)
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204ph abundance determined by 2%*T(n,y)

H1.1

| Nss(2%Pb)/Nss(*3°5m) N(2%Pb)/N(*595m) in stellar envelope
——— Lodders '20 % Prev, est. & n_TOF total
x] -
<3
1.65M, 2M, 3M, 4 Mg SA WA

Stellar model

Jn%

CIl-Chondrites

r—

Lodders, Space-Sci. Rev. 217
(2021)

The uncertainty arising from the 204Tl(n,y) cross section on the s-process abundance of 204Pb has
been reduced from ~30% down to +8%/-6%, and the s-process calculations are in agreement with K.
Lodders in 2021.

204Ph abundance of pure s-process origin:
—->No need for fractionation mechanisms in early Solar system
—->No need for invoking gamma-process contributions

G. Gonzalez 2014

M.Pignatari+ 2016


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.052702

Measuring Neutron capture on 7?Se (200 ky) to ‘measure’
temperature in Red Giant stars

......




ch The 7?Se(n,y) stellar thermometer TOF

letters to nature

Nepurg 332, 700 - 702 (11 Apeil 1988); doi10.1038/331700a0

S-process krypton of variable isotopic composition in the Murchison meteorite
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@) New techniques for enhanced sensitivity in (n,y) cross-section experiments m
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capture
event
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Fig. from H.Seo et al. IEEE-TNS, 55 (2008)



Total-Energy Detector with g-ray imaging capability (i-TED):

* Need of very high detection efficiency - arrays of large monolithic crystals
» Need of very low neutron sensitivity > Customized design with LaCl;(Ce) and 6Li-HD-PE absorbers

3D- Spatial calibration techniques: Final i-TED setup @ n_TOF:

Neutron absorbers based on SLi-
enriched HD-PE: No y-ray emission
after neutron absorption by 6Li (!)

Convolutional Neural Network

3D keras models for the =
individual crystals

L K

TensorFlow Keras

Crystal read-out and electronics: ] ] ]
Optical Photons simulation

R : P. Olleros et al. 2018 JINST13 P03014

ML-aided 3D-position reconstruction
J. Balibrea et al. NIM-A (2020)

LaCly(Ce)\
50 mm \
= e In total: 20 Position-Sensitive Detectors
e 1150 cm?3 of LaClI3(Ce)

V.Babiano et al, NIM-A 931 (2019) e 1280 readout channels (4xKintex FPGA, 20xTOFPET2 ASICs, PETsys)

Research
Council




Testing the gamma-ray vision capability of i-TED

Dynamic image: radioactive source in a remotely controlled XY-gantry imaged at multiple positions
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Imaging technique:

The 7%Se(n,y) stellar thermometer

h

Conventional C6D6 technique:
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https://doi.org/10.1051/epjconf/202327913001
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Beyond the limits: r-process neutron-reactions in the lab?
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Limits in (n,y) measurements on radioactive samples: s-process branchings

NTOF

REVIEW OF MODERN PHYSICS. VOLUME 83, JANUARY-MARCH 2011
The s process: Nuclear physics, stellar models, and observations

F. Képpeler”

Karisruhe Instiute of Technology, Campus Nord, institut for Kemphysik, 76021 Karsnuhe,
Germmany

R. Galiino®

Dipartimento of Fisica Generale, Universitd di Torino 1-10125 Torino, laly, and
INAF-Osservaiono Astronomico of Teramo, [-64100 Teramo, llaly

5. Bisterzo®

Dipartimenio of Fisica Generale, Universita oi Torino, 1-10125 Torno, Ktaly

Wako Aoki’
National Astronomical Observatory, Mitaka, Tokyo| 181-8588, Japan

2001

Sample Half-life (yr) Q value (MeV) Comment

63N 100.1 B~. 0.066 TOF work in progress (Couture, 2009), sample with low enrichment

9ge 2.95 X 10° B, 0.159 Important branching, constrains s-process temperature in massive stars

b 2.29 X 10° EC, 0.322 Part of "Se branching

ST 10.73 B, 0.687 Important branching, constrains neutron density in massive stars

By 64.02 d B~.1.125 Not feasible in near future, but important for neutron density low-mass
AGB stars

1340 2.0652 B, 2059 Important branching at A = 134,135, sensitive 0 s-process temperature in
low-mass AGB stars, measurement not feasible in near future

1350 2.3 %X 100 £, 0.269 So far only activation measurement at &7 = 25 keV by Patronis er al. (2004)

147Nd 10.981 d B, 0.896 Important branching at A = 147/148, constrains neutron density in low-mass
AGB stars

47pm 2.6234 B, 0.225 Part of branching at A = 147/148

145 Ppy 5.368d B, 2.464 Not feasible in the near future

151Sm 90 B, 0.076 Existing TOF measurements, full set of MACS data available (Abbondanno
et al., 2004a; Wisshak et al., 2006¢)

154En 8.593 B .1.978 Complex branching at A = 154, 155, sensitive to emperature and neutron
density

155 4.753 B~.0.246 So far only activation measurement at k7 = 25 keV by Jaag and Kiippeler
(1995)

153Gd 0.658 EC. 0.244 Part of branching at A = 154, 155

10Th 0.198 B, 1833 Weak temperature-sensitive branching, very challenging experiment

163, 4570 EC, 0.0026 Branching at A = 163 sensitive to mass density during s process, so far only
activation measurement at k7" = 25 keV by Jaag and Kappeler (1996b)

1707 0.352 B~.0.968 Important branching. constrains neutron density in low-mass AGB stars

17 T 1.921 B.0.098 Part of branching at A = 170, 171

79T 1.82 EC.0.115 Crucial for s-process contribution to "®’Ta. nature’s rarest stable isotope

18w 0.206 B, 0.432 Important branching, sensitive to neutron density and s-process temperature in
low-mass AGB stars

iz v 3.78 B .0.763 Determines 2**Pb/2%°T1 clock for dating of early Solar System

151Sm 93Zr 63Ni 171Tm 204T| 94Nb 7gse

Time

2025

151Sm

m = 200 mg
f=0.9

o=3b at 30keV

79Se

m=2.7m
f=7x104
c=0.2 b at 30keV




Limits in (n,y) measurements on radioactive samples: s-process branchings

Eur Phys. 1 A [2025) 610105 THE EUROPEAN ®
Liteps. oo 10, L La0iepiars 1 S 0025-01 5632 PHYSICAL JOURNAL A -:;r:v_u

Neutron capture measurements for s-process nucleosynthesis

A review aboul CERN n_TOF developments and contributions
The n_TOF Collabaration
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2001 Time 2025
151Sm 79§ e
m =200 mg m=27m
f=0.9 f=7x10%

c=3b at 30keV c=0.2 b at 30keV



Limits in (n,y) measurements on radioactive samples: s-process branchings

Target#3 (2021-present)
n

Eue Phys. 1 A [XI25) 61:108 THE EUROPEAN g
s L dGiegjais 1050412501563 ¢ PHYSICAL JOURNAL A

Neutron capture measurements for s-process nucleosynthesis

A review aboul CERN n_TOF developments and contributions
The n_TOF Collabaration

anomalies in

SiC-grains

Origin of heaviest
s-isotopes in SS

Difficulty Level

FOM

T in AGBs and
in M=gM TOF limit:
mg — 10"% atoms
<< fewy

171Tm  204T]

Target#1 (2000-2004)
n

94Nb 7QSe
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How far are r-nuclei from direct (n, y) measurements?

Will it be possible to measure (n,y)
cross sections directly on those
nuclei involved in explosive
nucleosynthesis?
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How far are r-nuclei from direct (n, Y) measurements?
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Limitations in (n,y) measurements with conventional methods

neutron beam

Radioactive target

>10"4 atoms



Turning thins around: Direct (n,y) measurements in inverse kinematics using neutron target!

neutron target
>1089 n/cm?

Stored Radioactive lon Beam
107 ions, 1 MHz, 10'3 ions/s



Free-neutron target concepts

I Protons
18002 T lati Particle
ungsten spallation target .
ion
uoRoe|e detectio

= l NTD at Target 2
g_ g = || dea cnnchen
28 8 =
EII' & = _% g . D,0 moderator 1 uA
Be 3 ) B5 800 MeV

8 = & Revolving

ions
iHpale mapnvi
Electron cooler ~ Schottky pickup s
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 014701 (2014) PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 044701 (2017)
Spallation-based neutron target for direct studies of neutron-induced
Measurements of neutron-induced reactions in inverse kinematics reactions in inverse kinematics
1 23 René Reifarth, Kathrin Gibel, Tanja Heftrich, and Mario Weigand
René Reifarth and Yun A. Litvinov™ Geethe-Universitit Frankfurt, Frankfurt am Main, 60438 Frankfiers, Germany
IGU&TI:E—[{HEVEHEI&'! Frankfurt am Main, Max-von-Laue-Str. I, 60438 Frankfurt am Main, Germany Beatriz Jurado
“GSI Helmbolizzenirum fiir Schwerionenforschung, 64291 Dammsiadt, Germany CENBG, 33175 Gradignan, France

AMax-Planck-Institut [fitr Kernphysik, 69117 Heidelberg, Germany Franz Kiippeler

Karlseuhe Institute of Technology, 76131 Karlsnhe, Germany
Yuri AL Litvinov

GEI Helmholtzzentrum fir Schwerionenforsclung, 64291 Darmarads, Germany
(Received 2% November 2016: published 6 April 2017)

Nuclear Reactor:

neutron flux — @, = 10" cm? s Spallation Target:
areal neutron density — n,= p,x z = @,/v,* 50 cm = 2.2x10"° n-cm-? Areal neutron density n,= 8 x 10° n cm2 (only a factor 2 < reactor)”
Reaction rate = L * time * 0 = 2.2E23 * 24h*3600*1E-27 cm2/mb = 20*c[mb] (Counts/day) Reaction rate = L * time * 0 = 8E22 * 24h*3600*1E-27 cm2/mb = 6.9*c[mb)]

See: Andrew L Cooper et al (2024) J. Phys.: Conf. Ser. 2743 012091



Supercompact-Cyclotron driven Neutron Target: Focus on feasibility
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Lot’s of literature on CANS, see e.g. Compact Accelerator Based Neutron Sources,
IAEA TEC DOCSeriesNo0.1981(International Atomic Energy Agency, Vienna, 2021).

https://www.iba-radiopharmasolutions.com/cyclotrons/cycloner-key-0/




Supercompact-Cyclotron driven Neutron Target

A. Tarifeno-Saldivia et al.
https://arxiv.org/abs/2508.15465v1

Submitted to Physical Review Aecelerators and Beams

Direct Neutron Reactions in Storage Rings Utilizing a Supercompact Cyclotron
Neutron Target

Ariel Tarifefio-Saldivia® and César Domingo-Pardo
Institute de Fisica Corpuscular (CSIC-Universitat de Vulénecia), Valencia, Spuin

Tris Dhillmann
TRIVMF, Vancowver B(', Canadn and
Department of Physics and Astronomy. University of Victoria, Victoria BC, Canada

Yuri A. Litvinov
81 Helimholizzentrwm fir Schwerionenforschung GumbH, Dormstad!, Germany ond
Institut fiir Kernohysik, | il 2 Kain, Kéaln ermany

Neutron-target “demo”:

* Cyclotron: IBA Cyclone KEY, 9.2 MeV
protons, up 130 LA current, 2.1 m? footprint

* Moderator: D,0O, 70 x 70 x 70 cm?3

» Reflector: Graphite, 50 cm thick

» Cryogenic system: LH,, 20 K, 13 mm
thickness, 10 mm inner diameter

« Total size: 1770 x 170 x 200 cm?

« Areal density: 3.4 x 106 n/cm?

* Where to find it? arXiv:2508.15465v1



https://arxiv.org/abs/2508.15465

Cyclotron options future facility (from A. Tarifeiio-Saldivia et al. arXiv:2508.15465v1)

Manufacturer Model Footprint Weight Proton Energy Max Current Shielding Thermal Areal Density Source
(m*) (tons) (MeV) (pnA) (n/em?)
IBA Cyclone KEY 1.5x1.4 7.5 9.2 130 Self-shielding (opt) 3.4 % 10° [38]
Best BG-95 < 2x2 22 9.5 120 Self-shielding 3.3 x 10° (39, 40]
Best B6-15/B15p 2.2x2.2 14 10 400 (550 *)  Self-shielding 1.2 x 107 [41]
GE PETtrace 800 series 1.33x1.2 20 16.5 160 Vault 6.7 x 10° [42]
IBA Cyclone KIUBE 1.9x1.9 18 18 300 Vault 1.5 x 107 [43]
Self-shielding (opt)
ACSI TR-FLEX 1.7x1.7 24 22 800 Vault 6.4 x 107 [44]
IBA Cyclone IKON 2.2x2.2 30 22 1500 Vault 1.2 x 10° [45]
ACSI TR-30 2.4x24 50 2 1600 Vault 1.3 x 10° [46]
IBA Cyclone T0 4x4 120 30-70 750 Vault >109 [47, 48]

TR-FLEX

Cyclone 70 ,j.r[—’“[_“l*--
1l .1 )



https://arxiv.org/abs/2508.15465

Storage-Ring options for a future “production™ facility (from A. Tarifeiio-Saldivia arXiv:2508.15465v1)
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K. Pak, B. DaV|ds, and Y. K. Kim, Nuclear Engineering and
Technology 57, 103392 (2025), arXiv:2312.11859

[physics.acc-ph].


https://arxiv.org/abs/2508.15465

Summary & Outlook
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CDP (+n_TOF Collaboration) Eur. Phys. J. A 61, 105 (2025).
https://doi.org/10.1140/epja/s10050-025-01563-z



https://doi.org/10.1140/epja/s10050-025-01563-z

Thanks to CERN n_TOF Collaborators und Gamma-Ray & Neutron Spectroscopy Group @ IFIC

Thanks to all funding agencies and institutions

Thanks for your attention!
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