

Indirect measurements of neutron-induced reaction cross sections at storage rings

B. Jurado¹, M. Sguazzin¹, J. Pibernat¹, J. A. Swartz¹, M. Grieser², J. Glorius³, Y. A. Litvinov³, R. Reifarth⁴, K. Blaum², P. Alfaurt¹, P. Ascher¹, D. Atanasov¹, L. Audouin⁵, C. Berthelot¹, B. Blank¹, B. Bruckner⁴, S. Dellmann⁴, I. Dillmann⁶, C. Domingo-Pardo⁷, M. Dupuis⁸, P. Erbacher⁴, M. Flayol¹, O. Forstner³, D. Freire-Fernandez², M. Gerbaux¹, J. Giovinazzo¹, S. Grevy¹, C. Griffin⁶, A. Gumberidze³, S. Heil⁴, A. Heinz⁹, W. Korten⁸, D. Kurtulgil⁴, G. Leckenby⁶, S. Litvinov³, B. Lorentz³, V. Meot⁸, J. Michaud¹, S. Perard¹, U. Popp³, M. Roche¹, M.S. Sanjari³, R.S. Sidhu¹⁰, U. Spillmann³, M. Steck³, Th. Stöhlker³, B. Thomas¹, L. Thulliez⁸, M. Versteegen¹

1- LP2I (ex-CENBG), Bordeaux, France
2- MPIK, Heidelberg, Germany
3-GSI, Darmstadt, Germany
4-University of Frankfurt, Germany
5-IJCLAB, Orsay, France
6-Triumf, Vancouver, Canada
7-IFIC, Valencia, Spain
8-CEA, France
9-University of Chalmers, Sweden
10-University of Edinburgh, UK

Introduction:

Neutron-induced reactions at energies below few MeV:

Motivation:

Need for neutron-induced reaction cross sections of radioactive nuclei

Essential for astrophysics, energy production and medicine!

 \rightarrow Very difficult or even impossible to measure with standard techniques because of the radioactivity of the targets.

 \rightarrow Complicated to calculate due to the difficulty to describe the de-excitation process. Calculations can be wrong by several orders of magnitude!

Surrogate-reaction method

Decay probabilities as a function of excitation energy are precious observables to constrain model parameters (fission barriers, level densities...) and provide much more accurate predictions for neutron-induced cross-sections of nuclei far from stability.

Benchmark: 4He+240Pu→4He'+240Pu*⇔n+239Pu→240Pu*

First simultaneous measurement of P_f and P_y!

Stringent test of experimental method!

Only way to access the fission threshold of fissile nuclei!

R. Perez Sanchez, BJ et al., Phys. Rev .Lett. 125 (2020) 122502

First simultaneous determination of neutron-induced fission and capture cross sections n+239Pu→240Pu*

R. Perez Sanchez, BJ et al., Phys. Rev .Lett. 125 (2020) 122502

Measurement of fission and gamma-emission probabilities in direct kinematics

Advantages of heavy-ion storage rings

The ESR at GSI/FAIR

e- cooler

Beam cooling → Excellent energy and position resolution of the beam, maintained after each passage through the target, negligible, E-loss & straggling effects

Use of ultra-thin in-ring gas-jet targets ~10¹³/cm².
 Effective target thickness increased by ~10⁶ due to revolution frequency (at 10 A MeV)

 High-quality, pure, fully-stripped beams and pure, ultra-thin, windowless targets → unique!

Challenge: Detectors in Ultra-High Vacuum (10⁻¹¹-10⁻¹² mbar)!

First proof of principle experiment at the ESR, 208Pb(p,p'), 20-27 June 2022

Preliminary results, excitation energy resolution

Preliminary results, detection of beam-like residues

PhD Thesis of Michele Sguazzin

Preliminary results, detection of beam-like residues

PhD Thesis of Michele Sguazzin

Entries 579 Mean x 29.05 Mean y -16.2 Std Dev x 15.12 Std Dev y 2.27

X{mm}

Preliminary results for gamma and neutron-emission probabilities

PhD Thesis of Michele Sguazzin

Origin of the structures

Perspectives: measure simultaneously fission, neutron and gamma-emission probabilities

- Add fission detectors. First time that fission is studied in a storage ring!
- Demonstrate feasibility for measuring simultaneously P_f, P_γ and P_n!
- Experiment accepted, to be probably conducted in 2024!
- After, produce dedicated reaction chamber to increase target-residue and fission detection efficiencies!

Longer term perspectives: other stable & radioactive beams...

Conclusions...

-Storage rings offer the ideal conditions to investigate surrogate reactions! -First proof of principle experiment succesfully conducted at the ESR in June 2022

- $\rightarrow \Delta E^* \approx 600 \text{ keV}$ in accordance with expectations
- → Full separation and 70-100% detection efficiency for beam-like residues
- \rightarrow Validation of new methodology for simultaneous measurement of P_y and P_n

...Perspectives

- -Use P_{γ} and P_n to determine the neutron-induced cross sections of 207Pb -Add a fission detector to measure simultaneously P_{γ} , P_n and P_f with ²³⁸U & target radius 0.5-1 mm.
- -Build a dedicated reaction chamber to significantly increase efficiency for target residues and fission.
- -Measurements with radioactive beams!

Acknowledgements

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715). NECTAR: Nuclear rEaCTions At storage Rings

Prime 80 program from CNRS, PhD thesis of M. Sguazzin

BACK-UP SLIDES

Angular uncertainty due to target radius

