Quasi-particle excitations far from the path of stability.

Andrzej Tucholski University of Warsaw, HIL

Area of interest

Nuclear shape can change from prolate to oblate within the same nucleus and only with one pair breaking.

Nuclear states of different deformation, close in energy – their wave functions can mix ---> shape coexistance.

Why are single particle excitations important?

- Low-energy nuclear-structure properties show a strong dependence on the nuclear pairing force.
- govern the shape change of excited nuclei
- can tell about the properties and structure of nuclei far from the valley of stability
- bandheads of many collective bands at low excitation energy
- astrophysical nucleosynthesis studies, it is important to have available pairing models and pairing parameters that give reliable results far from the valley of β-stability.
- Rotationally align two proton excitation versus two neutron excitation from $h_{11/2}$ orbit are of particular interest for A ~ 130 mass region.

The Macro-Micro model

The macroscopic-microscopic method:

 $E = E_{macro} + E_{micro}$,

 E_{macro} is the macroscopic energy. The Yukawa-plus-exponential model [finite range liquid-drop (FRLD) model] were applied. E_{micro} is the microscopic energy calculated from a non-self-consistent average deformed Wood-Saxon potential. Pairing as usual BCS*

* J. Dudek, A. Majhofer, and J. Skalski, J. Phys. G 6, 447 (1980).

The experimental observables

- lifetime measured by Recoil Distance
 Doppler-Shift (RDDS) method
- magnetic moments measured by Recoil In Vacuum (RIV) method or Transient Field (TF) method
- quadrupole moments

The Recoil Distance Doppler-Shift Method Target Stopper $\tau\cong 1-1000 \text{ps}$ v~1-2%c θ Detector d -----1800 þ or min 7 u: unshifted s: shifted $E_u = E_s = E_u (1 + v/c \cos\theta)$

Two observables by RDDS method:

- velocity of the compound nucleus
- lifetime of the nuclear level

Experiment in Warsaw at HIL Lifetime measurements of 10⁺ isomer in the ¹³⁶Nd nucleus

- A. Tucholski,¹ Ch. Droste,² J. Srebrny,¹ C. M. Petrache,³ J. Skalski,⁴ P. Jachimowicz,⁵
- M. Fila,² T. Abraham,¹ M. Kisieliński,¹ A. Kordyasz,¹ M. Kowalczyk,¹ J. Kownacki,¹ T. Marchlewski,¹ P. J. Napiorkowski,¹ L. Próchniak,¹ J. Samorajczyk-Pyśk,¹ A. Stolarz,¹ A. Astier,³ B. F. Lv,³ E. Dupont,³ S. Lalkovski,⁶ P. Walker,⁷ E. Grodner,⁴ and
- Stolarz,¹ A. Astier,³ B. F. Lv,³ E. Dupont,³ S. Lalkovski,⁶ P. Walker,⁷ E. Grodner,⁴ and Z. Patyk⁴
- 1 Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warsaw, Poland
- 2 Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
- 3 Centre de Sciences Nuclaires et Sciences de la Matire, CNRS/IN2P3, Université Paris-Saclay, Batiment 104-108, 91405 Orsay, France
- 4 National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
- 5 Faculty of Physics and Astronomy, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland
- 6 Nuclear Engineering, Faculty of Physics, Sofia University "St. Kl. Ohridski", 5 James Bourchier Boulevard, Sofia 1164, Bulgaria
- 7 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

PHYSICAL REVIEW C 100, 014330 (2019)

Experimental set-up

Plunger device

• Target to stopper distance change in micrometers

EAGLE, HIL Warsaw

- 15 HPGe
- anticompton shields
- + 1% eff. for $\,\gamma$ rays of 500 keV

Reaction: ¹²⁰Sn(²⁰Ne,4n)¹³⁶Nd Beam energy: 97.5 MeV Target thickness: 0.5mg/cm² of ¹²⁰Sn

Plunger in EAGLE

The cross section for the ¹²⁰Sn + ²⁰Ne reaction. It was assumed that the ¹²⁰Sn target and the Au backing foil are 0.5mg/cm 2 and 5mg/cm 2 thick, respectively.

Plunger callibration 100 -50 50 0 0.08-0.08 21-Nov-17 12 22:00 Gattle Dataset: Table1 2 Function: a*x+b 1186 0.07 0.07-Chi^2/doF = 3.1658203266961e-07 R^2 = 0.9963716080669 5.50 a = 6.5333621060522e-04 +/- 1.1381317334944e-05 b = 1.7065651015275e-02 +/- 8.3313819437000e-04 F 0.06-0.06 0.05 -0.05 1/(C-C_∞) E 0.04 0.04 3.50 0.03-0.03 - 0.02 0.02-0.01 0.01-0 0 -0.01--0.01-5050 100 0 d [µm] Eγ

Efficiency of Ge detectors

Differential Decay Curve Method

$$\frac{d}{dt}n_i(t) = -\lambda_i n_i(t) + \sum_h b_{hi}\lambda_h n_h(t)$$

$$\tau_i(t) = \frac{-n_i(t) + \sum_h b_{hi} n_h(t)}{\frac{d}{dt}n_i(t)}$$

2⁺ state 374 keV

12⁺ state 3686 keV

10⁺ configuration structure

Transition Probability is given by the quantum mechanical Fermi-Golden rule

Lifetime of 10⁺ 3279 keV is 1.63ns what is 30 times longer then the lifetime of 10⁺ 3296 keV which is 51 ps

10⁺ at 3279 and 10⁺ at 3296 have different structure

- Lifetime 10+ 3296 keV 51 ps \rightarrow B(E2) = 2 W.u., g-factor = 1 \rightarrow (h_{11/2})² proton-aligned excitation
 - Lifetime 10+ 3296 keV 1.63 ns \rightarrow B(E2) = 0.07 W.u., $f_v = 1.4$, ?? $(h_{_{11/2}})^2$ neutron-aligned ?

Transition rate hindrance factor

$$F_{W} = T_{\gamma 1/2} / T_{W 1/2}$$
$$v = \Delta K - \lambda$$
$$f_{v} = (F_{W})^{1/v}$$

Weisskopf hindrance degree of K forbiddenness reduced hindrance (hindrance per degree of K forbiddenness)

A rather small reduced hindrance of the electromagnetic decay of the 10^+ state at 3279 keV, $f_v = 1.4$ for v = 8

1) two possible, relatively low lying 2 quasi-particle $K^{\pi} = 10^+$ configurations, one neutron, one proton, both build from the orbitals $\Omega^{\pi} = 9/2^-$ and $11/2^-$ of the intruder $h_{11/2}$ sub-shells.

2) These lowest- Ω members of the h_{11/2} intruder subshells lie much closer (less than 0.5 MeV) to the respective Fermi level - alignment

3) The deformation of the aligned configuration is driven towards the smaller $|\varepsilon_v - \lambda|$, oblate collective rotation for the aligned neutrons and prolate for the aligned protons.

g-factor as a probe of single particle configuration

 $\mu(\nu) = g_l I + \frac{g(\nu) - g_l}{(I+1)} [\Omega^2 + \frac{1}{4} (2I+1)(-1)^{l+1/2} b(\nu) \delta_{1/2}]$ $g_l = \begin{cases} 1 & \text{for protons} \\ 0 & \text{for neutrons} \end{cases}$ $g(\nu) = \begin{cases} 5.82 & \text{for protons} \\ -3.82 & \text{for neutrons} \end{cases}$ $g(10^+) = \begin{cases} 1 & \text{for aligned protons} \\ -0.18 & \text{for aligned neutrons} \end{cases}$

Hyperfine interactions

 $H = a \cdot J \cdot I,$

with eigenvalues:

$$E_F = \frac{a}{2} \{ F(F+1) - I(I+1) - J(J+1) \}$$

and eigenfunctions:

$$|F, M > =$$

$$\sum_{m_1=-I}^{I} (I, m_1, J, M - m_1 | F, M) | I, m_1 > | J, M - m_1 >,$$

$$\begin{split} W(\theta) &= a_0 (1 + a_2 P_2(\theta) + a_4 P_4(\theta) + a_6 P_6(\theta)) \\ G_k(t) &= \frac{a_2(t)}{a_0} \\ G_k(t) &= \sum_{FF'} \frac{(2F+1)(2F'+1)}{(2J+1)} \left\{ \frac{FF'k}{IIJ} \right\}^2 e^{-i\omega_{FF'}t} \\ \text{where } \omega_{FF'} &= (E_F - E_{F'})/\hbar \end{split}$$

for
$$J=\frac{1}{2}$$
:

$$\omega=(2I+1)g\frac{\mu_{N}H(0)}{\hbar}$$

Two ways of g-factor measurements

Polarize electrons of the moving ion via spin exchange interactions with the polarized electrons of a ferromagnetic host

Transient Field (TF) method precession precession of nuclear spin about fixed axis (external field) \mathbf{U} $\mathbf{W}(\theta,t)=1+a_{2}P_{2}[\cos(\theta-\omega_{1}t)]+a_{4}P_{4}[(\cos(\theta-\omega_{1}t)]+a_{4}P_{4}[(\cos(\theta-\omega_{1}t))]$ The moving ion recoil into vacuum (RIV)

Recoil in Vacuum

Coulomb excitation ¹⁴⁸Nd as reference magnetic hyperfield measure for ¹³⁶Nd experiment

A.Tucholski, J.Srebrny, P.Napiorkowski, Ch.Droste,
M.Kowalczyk, M.Palacz, K. Wrzosek-Lipska,
K.Hadyńska, G.Jaworski, J.Puśk-Samorajczyk,
A.Stolarz, T.Abraham, C.Fransen, A.Blashev

Warsaw University, HIL

Depends on velocity. Average charge state is reached while passing through the target foil. (Avg. charge state reached within a fraction of the target at these velocities.)

-> Avg. charge state determines atomic physics (electron-configurations)

Figure: The line 770keV and its Doppler shifted flight component of 777keV of the transition $6 + \rightarrow 4 + \text{ of the reaction}$ ¹²⁰Sn(²⁰Ne, 4n)¹³⁶Nd.

Experimental set-up

The ED stands for entrance diaphragm, D stands for Si annular detector, T - for target with backing foil, S - for stopper, BC - beam dumper, black circles - red circles - ¹⁴⁸Nd recoils.

First experimental results of gamma spectrum in coincidence with beam (¹⁰B) in Si backscattering detector

Conclusions

- A rather small reduced hindrance of the electromagnetic decay of the 10⁺ state at 3279 keV, f_v = 1.4 for v = 8, would be consistent with its K-mixed character.
- The moment of inertia of the band built on it , smaller than the one of the g.s. band, would be compatible either with a decrease in β deformation for a two-neutron configuration or with a close-tooblate deformation of the two-proton one.
- Magnetic properties of 10+ will determine about the character of excitation due to different magnetic properties on neutrons against protons
- Next experiment in collaboration with
 Koln University, IKP
 Christoph Fransen

