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Area of interest

Nuclear shape can change from prolate to oblate within the same nucleus 
and only with one pair breaking.

Nuclear states of different deformation, close in energy – their wave 
functions can mix ---> shape coexistance.

We based on the deformed Woods-
Saxon single-particle potential and 
the Yukawa-plus-exponential 
macroscopic energy. Pairing 
implemented with usual BCS.
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Prolate deformations (β>0) found 
for 136Nd 



  

Why are single particle excitations 
important?

• Low-energy nuclear-structure properties show a strong 
dependence on the nuclear pairing force.

• govern the shape change of excited nuclei 

• can tell about the properties and structure of nuclei far from the 
valley of stability

• bandheads of many collective bands at low excitation energy
• astrophysical nucleosynthesis studies, it is important to have 

available pairing models and pairing parameters that give reliable 
results far from the valley of β-stability.

• Rotationally align two proton excitation versus two neutron 
excitation from h11/2 orbit are of particular interest for A ~ 130 
mass region.



The Macro-Micro model

The macroscopic-microscopic method: 

E = E
macro

+ E
micro

,

E
macro

 is the macroscopic energy. The 

Yukawa-plus-exponential model [finite range 
liquid-drop (FRLD) model] were applied.
E

micro
 is the microscopic energy calculated 

from a non-self-consistent average deformed 
Wood-Saxon potential. 
Pairing as usual BCS*
 
* J. Dudek, A. Majhofer, and J. Skalski, J. 
Phys. G 6, 447 (1980).



The experimental observables

  lifetime – measured by Recoil Distance 
Doppler-Shift (RDDS) method  

  magnetic moments – measured by Recoil In 
Vacuum (RIV) method or Transient Field 
(TF) method

  quadrupole moments





Two observables by RDDS method:
• velocity of the compound nucleus

• lifetime of the nuclear level
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Experimental 
set-up

Plunger device 
•  Target to stopper distance change 
in micrometers

EAGLE, HIL Warsaw
•  15 HPGe 
•  anticompton shields
• 1% eff. for  γ rays of 500 keV

Reaction:       120Sn(20Ne,4n)136Nd
Beam energy:    97.5 MeV

Target thickness: 0.5mg/cm2 of 120Sn



Plunger in EAGLE



The cross section for the 120Sn + 20Ne reaction. It was
assumed that the 120Sn target and the Au backing foil are

0.5mg/cm 2 and 5mg/cm 2 thick, respectively.



Eγ

Efficiency of Ge detectors









2+ state 374 keV 12+ state 3686 keV







10+ state 3279 keV



10+ configuration structure

Transition Probability is given by the quantum mechanical Fermi-
Golden rule

                           M
if
 = <f|H|i>

Lifetime of 10+ 3279 keV is 1.63ns what is 30 times longer then 
the lifetime of 10+ 3296 keV which is 51 ps

 10+ at 3279 and 10+ at 3296 have different structure



 Lifetime 10+ 3296 keV – 51 ps → B(E2) = 2 W.u.,     
g-factor = 1  → (h

11/2
)2 proton-aligned excitation  

 Lifetime 10+ 3296 keV – 1.63 ns → B(E2) = 0.07 
W.u.,   fν = 1.4 ,  ?? (h

11/2
)2 neutron-aligned ?



Transition rate hindrance factor

      FW = Tγ1/2/ TW1/2    Weisskopf hindrance

             ν  = ΔK – λ        degree of K forbiddenness
  fν  = (FW)1/ν         reduced hindrance

                                                  (hindrance per degree of
                                              K forbiddenness)

A rather small reduced hindrance of the electromagnetic
decay of the 10+ state at 3279 keV, fν = 1.4 for ν = 8



neutrons protons



1) two possible, relatively low lying 2 quasi-particle Kπ = 10+ 
configurations, one neutron, one proton, both build from the orbitals 
Ωπ = 9/2- and 11/2- of the intruder h11/2 sub-shells.

2) These lowest-Ω members of the h11/2 intruder subshells lie much 
closer (less than 0.5 MeV) to the respective Fermi level - alignment

3) The deformation of the aligned configuration is driven towards the 
smaller |દν − λ|, oblate collective rotation for the aligned neutrons and 
prolate for the aligned protons.



g-factor as a probe of single 
particle configuration



Hyperfine interactions 





  

Two ways of g-factor measurements

Polarize electrons of the moving 
ion via spin exchange 
interactions with the polarized 
electrons of a ferromagnetic host

The moving ion recoil into vacuum 
(RIV)

Transient Field (TF) method-
precession

Neclear Deorientation

precession of nuclear spin

about random axesprecession of nuclear spin about

fixed axis (external field)
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Recoil in Vacuum

Beam

Target Foil
Total angular 
momentum F

Nuclear spin

 Recoil Ion

Target recoil

In vacuum, recoiling ion electron angular 
momentum J has random direction. Recoiling 
ion nuclear spin I, initially aligned in plane of 
target, precesses about resultant F=I+J. 
Anisotropy of angular distribution of decay 
gamma emission becomes attenuated.



  

Coulomb excitation 148Nd as 
reference magnetic hyperfield 
measure for 136Nd experiment

A.Tucholski, J.Srebrny, P.Napiorkowski, Ch.Droste, 
M.Kowalczyk, M.Palacz, K. Wrzosek-Lipska, 
K.Hadyńska, G.Jaworski, J.Puśk-Samorajczyk, 
A.Stolarz, T.Abraham, C.Fransen, A.Blashev 
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Figure: The line 770keV and its Doppler shifted flight
component of 777keV of the transition 6 + → 4 + of the reaction
120Sn( 20Ne, 4n) 136Nd.



The ED stands for entrance diaphragm, D stands for Si annular
detector, T - for target with backing foil, S - for stopper, BC - beam 
dumper, black circles - red circles - 148Nd recoils.

Experimental set-up



First experimental results of gamma spectrum 
in coincidence with beam (10B) in Si 

backscattering detector



  

Conclusions
• A rather small reduced hindrance of the electromagnetic decay of 

the 10+ state at 3279 keV, fν = 1.4 for ν = 8, would be consistent 
with its K-mixed character.

• The moment of inertia of the band built on it , smaller than the one 
of the g.s. band, would be compatible either with a decrease in β 
deformation for a two-neutron configuration or with a close-to-
oblate deformation of the two-proton one.

• Magnetic properties of 10+ will determine about the character of 
excitation due to different magnetic properties on neutrons against 
protons

• Next experiment in 

collaboration with 

Koln University, IKP

Christoph Fransen
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