Quasi-particle excitations far from the path of stability.

Andrzej Tucholski
University of Warsaw, HIL

Area of interest

We based on the deformed WoodsSaxon single-particle potential and the Yukawa-plus-exponential macroscopic energy. Pairing implemented with usual BCS.
S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and T. Werner, Comput. Phys. Commun. 46,379(1987). J.Skalski,J.Mizutori,W.Nazarewicz Nucl. Phys.A 617 (1997) 282-315

Nuclear shape can change from prolate to oblate within the same nucleus and only with one pair breaking.

Nuclear states of different deformation, close in energy - their wave functions can mix ---> shape coexistance.

Why are single particle excitations important?

- Low-energy nuclear-structure properties show a strong dependence on the nuclear pairing force.
- govern the shape change of excited nuclei
- can tell about the properties and structure of nuclei far from the valley of stability
- bandheads of many collective bands at low excitation energy
- astrophysical nucleosynthesis studies, it is important to have available pairing models and pairing parameters that give reliable results far from the valley of β-stability.
- Rotationally align two proton excitation versus two neutron excitation from $\mathrm{h}_{11 / 2}$ orbit are of particular interest for $\mathrm{A} \sim 130$ mass region.

Qudrupole deformation $\boldsymbol{\beta}_{2}$ for Nd isotopes

The Macro-Micro model

The macroscopic-microscopic method:

$$
\mathrm{E}=\mathrm{E}_{\text {macro }}+\mathrm{E}_{\text {micro }},
$$

$\mathrm{E}_{\text {macro }}$ is the macroscopic energy. The
Yukawa-plus-exponential model [finite range liquid-drop (FRLD) model] were applied. $\mathrm{E}_{\text {micro }}$ is the microscopic energy calculated from a non-self-consistent average deformed Wood-Saxon potential. Pairing as usual BCS*

* J. Dudek, A. Majhofer, and J. Skalski, J. Phys. G 6, 447 (1980).

The experimental observables

- lifetime - measured by Recoil Distance Doppler-Shift (RDDS) method
- magnetic moments - measured by Recoil In Vacuum (RIV) method or Transient Field (TF) method
- quadrupole moments

The Recoil Distance Doppler-Shift Method

Two observables by RDDS method:

- velocity of the compound nucleus
- lifetime of the nuclear level

Experiment in Warsaw at HIL Lifetime measurements of 10^{+}isomer

in the ${ }^{136} \mathrm{Nd}$ nucleus

A. Tucholski, ${ }^{1}$ Ch. Droste, ${ }^{2}$ J. Srebrny, ${ }^{1}$ C. M. Petrache, ${ }^{3}$ J. Skalski, ${ }^{4}$ P. Jachimowicz, ${ }^{5}$

M. Fila, ${ }^{2}$ T. Abraham, ${ }^{1}$ M. Kisieliński, ${ }^{1}$ A. Kordyasz, ${ }^{1}$ M. Kowalczyk, ${ }^{1}$ J. Kownacki, ${ }^{1}$ T. Marchlewski, ${ }^{1}$ P. J. Napiorkowski, ${ }^{1}$ L. Próchniak, ${ }^{1}$ J. Samorajczyk-Pyśk, ${ }^{1}$ A. Stolarz, ${ }^{1}$ A. Astier, ${ }^{3}$ B. F. Lv, ${ }^{3}$ E. Dupont, ${ }^{3}$ S. Lalkovski, ${ }^{6}$ P. Walker, ${ }^{7}$ E. Grodner, ${ }^{4}$ and Z. Patyk ${ }^{4}$

1 - Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warsaw, Poland
2 - Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
3 - Centre de Sciences Nuclaires et Sciences de la Matire, CNRS/IN2P3, Université Paris-Saclay, Batiment 104-108, 91405 Orsay, France
4 - National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
5 - Faculty of Physics and Astronomy, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland
6 - Nuclear Engineering, Faculty of Physics, Sofia University "St. Kl. Ohridski", 5 James Bourchier Boulevard, Sofia 1164, Bulgaria
7 - Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
PHYSICAL REVIEW C 100, 014330 (2019)

Experimental set-up

Plunger device

- Target to stopper distance change in micrometers

EAGLE, HIL Warsaw

- 15 HPGe
- anticompton shields
- 1% eff. for γ rays of 500 keV

Reaction: ${ }^{120} \mathrm{Sn}\left({ }^{20} \mathrm{Ne}, 4 \mathrm{n}\right)^{136} \mathrm{Nd}$
Beam energy: 97.5 MeV
Target thickness: $0.5 \mathrm{mg} / \mathrm{cm}^{2}$ of ${ }^{120} \mathrm{Sn}$

Plunger in EAGLE

The cross section for the ${ }^{120} \mathrm{Sn}+{ }^{20} \mathrm{Ne}$ reaction. It was assumed that the ${ }^{120} \mathrm{Sn}$ target and the Au backing foil are $0.5 \mathrm{mg} / \mathrm{cm} 2$ and $5 \mathrm{mg} / \mathrm{cm} 2$ thick, respectively.

Efficiency of Ge detectors

Band 11

Band 13

Differential Decay Curve Method

$$
\begin{aligned}
\frac{d}{d t} n_{i}(t) & =-\lambda_{i} n_{i}(t)+\sum_{h} b_{h i} \lambda_{h} n_{h}(t) \\
\tau_{i}(t) & =\frac{-n_{i}(t)+\sum_{h} b_{h i} n_{h}(t)}{\frac{d}{d t} n_{i}(t)}
\end{aligned}
$$

2^{+}state 374 keV

12^{+}state 3686 keV

10^{+}state 3279 keV

10^{+}configuration structure

Transition Probability is given by the quantum mechanical FermiGolden rule

Lifetime of $10^{+} 3279 \mathrm{keV}$ is 1.63 ns what is 30 times longer then the lifetime of $10^{+} 3296 \mathrm{keV}$ which is 51 ps

10^{+}at 3279 and 10^{+}at 3296 have different structure

Lifetime 10+ $3296 \mathrm{keV}-51 \mathrm{ps} \rightarrow \mathrm{B}(\mathrm{E} 2)=2 \mathrm{~W} . \mathrm{u} .$, g-factor $=1 \rightarrow\left(\mathrm{~h}_{11 / 2}\right)^{2}$ proton-aligned excitation

Lifetime 10+ $3296 \mathrm{keV}-1.63 \mathrm{~ns} \rightarrow \mathrm{~B}(\mathrm{E} 2)=0.07$ W.u., $\mathrm{f}_{\mathrm{v}}=1.4$, ?? $\left(\mathrm{h}_{11 / 2}\right)^{2}$ neutron-aligned?

Transition rate hindrance factor

$$
\begin{array}{cc}
\mathrm{F}_{\mathrm{W}}=\mathrm{T}_{\mathrm{\gamma} 1 / 2} / \mathrm{T}_{\mathrm{W} 1 / 2} & \text { Weisskopf hindrance } \\
v=\Delta K-\lambda & \text { degree of } K \text { forbiddenness } \\
f_{v}=\left(\mathrm{F}_{\mathrm{W}}\right)^{1 / v} & \text { reduced hindrance } \\
& \text { (hindrance per degree of } \\
& K \text { forbiddenness) }
\end{array}
$$

A rather small reduced hindrance of the electromagnetic decay of the 10^{+}state at $3279 \mathrm{keV}, \mathrm{f}_{\mathrm{v}}=1.4$ for $\mathrm{v}=8$
neutrons

protons

1) two possible, relatively low lying 2 quasi-particle $\mathrm{K}^{\pi}=10^{+}$ configurations, one neutron, one proton, both build from the orbitals $\Omega^{\pi}=9 / 2$ and $11 / 2$ of the intruder $h_{11 / 2}$ sub-shells.
2) These lowest- Ω members of the $\mathrm{h}_{11 / 2}$ intruder subshells lie much closer (less than 0.5 MeV) to the respective Fermi level - alignment
3) The deformation of the aligned configuration is driven towards the smaller $\left|\varepsilon_{v}-\lambda\right|$, oblate collective rotation for the aligned neutrons and prolate for the aligned protons.

g-factor as a probe of single particle configuration

$$
\begin{gathered}
\mu(\nu)=g_{l} I+\frac{g(\nu)-g_{l}}{(I+1)}\left[\Omega^{2}+\frac{1}{4}(2 I+1)(-1)^{l+1 / 2} b(\nu) \delta_{1 / 2}\right] \\
g_{l}= \begin{cases}1 & \text { for protons } \\
0 & \text { for neutrons }\end{cases} \\
g(\nu)= \begin{cases}5.82 & \text { for protons } \\
-3.82 & \text { for neutrons }\end{cases} \\
g\left(10^{+}\right)= \begin{cases}1 & \text { for aligned protons } \\
-0.18 & \text { for aligned neutrons }\end{cases}
\end{gathered}
$$

Hyperfine interactions

$$
H=a \cdot J \cdot I,
$$

with eigenvalues:

$$
E_{F}=\frac{a}{2}\{F(F+1)-I(I+1)-J(J+1)\}
$$

and eigenfunctions:

$$
\begin{aligned}
& \mid F, M>= \\
& \sum_{m_{1}=-I}^{I}\left(I, m_{1}, J, M-m_{1} \mid F, M\right)\left|I, m_{1}>\right| J, M-m_{1}>,
\end{aligned}
$$

$$
\begin{gathered}
W(\theta)=a_{0}\left(1+a_{2} P_{2}(\theta)+a_{4} P_{4}(\theta)+a_{6} P_{6}(\theta)\right) \\
G_{k}(t)=\frac{a_{2}(t)}{a_{0}} \\
G_{k}(t)=\sum_{F F^{\prime}} \frac{(2 F+1)\left(2 F^{\prime}+1\right)}{(2 J+1)}\left\{\frac{F F^{\prime} k}{I I J}\right\}^{2} e^{-i \omega_{F F^{\prime}} t}
\end{gathered}
$$

where $\omega_{F F^{\prime}}=\left(E_{F}-E_{F^{\prime}}\right) / \hbar$
for $J=\frac{1}{2}:$

$$
\omega=(2 I+1) g \frac{\mu_{N} H(0)}{\hbar}
$$

Two ways of g-factor measurements

Polarize electrons of the moving ion via spin exchange interactions with the polarized electrons of a ferromagnetic host

Transient Field (TF) method-

 precession
precession of nuclear spin about
fixed axis (external field)
$\mathrm{W}(\theta, \mathrm{t})=1+\mathrm{a}_{2} \mathrm{P}_{2}\left[\cos \left(\theta-\omega_{\mathrm{L}} \mathrm{t}\right)\right]+\mathrm{a}_{4} \mathrm{P}_{4}\left[\left(\cos \left(\theta-\omega_{\mathrm{L}} \mathrm{t}\right)\right]\right.$

The moving ion recoil into vacuum (RIV)

Neclear Deorientation

precession of nuclear spin about random axes
$\mathrm{W}(\theta, \mathrm{t})=1+\mathrm{a}_{2} \mathrm{G}_{2}(\mathrm{t}) \mathrm{P}_{2}[\cos (\theta)]+\mathrm{a}_{4} \mathrm{G}_{4}(\mathrm{t}) \mathrm{P}_{4}[(\cos (\theta)]$

Recoil in Vacuum

Coulomb excitation ${ }^{148} \mathrm{Nd}$ as reference magnetic hyperfield measure for ${ }^{136} \mathrm{Nd}$ experiment

A.Tucholski, J.Srebrny, P.Napiorkowski, Ch.Droste, M.Kowalczyk, M.Palacz, K. Wrzosek-Lipska, K.Hadyńska, G.Jaworski, J.Puśk-Samorajczyk, A.Stolarz, T.Abraham, C.Fransen, A.Blashev

Warsaw University, HIL

Depends on velocity. Average charge state is reached while passing through the target foil.
(Avg. charge state reached within a fraction of the target at these velocities.)
-> Avg. charge state determines atomic physics (electron-configurations)

Figure: The line 770 keV and its Doppler shifted flight component of 777 keV of the transition $6+\rightarrow 4+$ of the reaction ${ }^{120} \mathrm{Sn}\left({ }^{20} \mathrm{Ne}, 4 \mathrm{n}\right){ }^{136} \mathrm{Nd}$.

Experimental set-up

The ED stands for entrance diaphragm, D stands for Si annular detector, T - for target with backing foil, S - for stopper, BC - beam dumper, black circles - red circles - ${ }^{148} \mathrm{Nd}$ recoils.

First experimental results of gamma spectrum in coincidence with beam ($\left.{ }^{10} \mathrm{~B}\right)$ in Si backscattering detector

Conclusions

- A rather small reduced hindrance of the electromagnetic decay of the 10^{+}state at 3279 keV , $\mathrm{f}_{\mathrm{v}}=1.4$ for $\mathrm{v}=8$, would be consistent with its K-mixed character.
- The moment of inertia of the band built on it , smaller than the one of the g.s. band, would be compatible either with a decrease in β deformation for a two-neutron configuration or with a close-tooblate deformation of the two-proton one.
- Magnetic properties of $10+$ will determine about the character of excitation due to different magnetic properties on neutrons against protons
- Next experiment in collaboration with
Koln University, IKP
Christoph Fransen

