Rozkład wysokości barier na fuzję w systemach ²⁴Mg + ^{90,92}Zr - wpływ dyssypacji

Agnieszka Trzcińska / Barriers Collaboration

Bariera kulombowska

Bariera kulombowska – jedna?

- Pojedyncza bariera (Single Barrier Model) dobry opis przekrojów czynnych na fuzję dla lekkich układów
- Dla cięższych układów (np. ¹⁶O + ^Asm) w eksperymencie obserwuje się <u>wyższe</u> przekroje czynne na fuzję dla energii podbarierowych

 ◆ Dobre przewidywania przekrojów czynnych na fuzję uzyskuje się uwzględniając wiele barier wynikających ze sprzężeń rożnych kanałów reakcji → rozkład wysokości barier

Rozkład wysokości barier

Rozkład wysokości barier

A. M. Stefanini et al., Phys. Rev. Lett. 74 (1995) 864

Metody doświadczalnego wyznaczania rozkładów barier na fuzję

Metody doświadczalnego wyznaczania rozkładów barier na fuzję

Metody doświadczalnego wyznaczania rozkładów barier na fuzję

Przybliżoną równoważność obu metod pokazano w pracy L.F. Canto et al., Phys. Rep. 424 (2006) 1

Wcześniejsze eksperymenty – układ doświadczalny

CUDAC: kompaktowa (40 cm) komora @ ŚLCJ

Wcześniejsze eksperymenty – układ doświadczalny

CUDAC: kompaktowa (40 cm) komora @ ŚLCJ

> 30 PIN diód 1x1cm @130°, 140°, 150°

degrader

2 PIN diody @ 35°

Wcześniejsze eksperymenty – układ doświadczalny

Wcześniejsze eksperymenty – ²⁰Ne jako pocisk

• pocisk: ²⁰Ne – jądro silnie zdeformowane:

 $\beta_2 = 0.46, \beta_3 = 0.39, \beta_4 = 0.27$

Wcześniejsze eksperymenty – ²⁰Ne jako pocisk

pocisk: ²⁰Ne – jądro silnie zdeformowane:

 $\beta_2 = 0.46, \beta_3 = 0.39, \beta_4 = 0.27$

 obliczenia przeprowadzone metodą Kanałów Sprzężonych (CC) przewidują rozkład barier ze "strukturą" dla systemu ²⁰Ne+X

rozkłady barier dla układów ²⁰Ne + ...

rozkłady barier dla układów ²⁰Ne + ...

rozkłady barier dla układów ²⁰Ne + ...

rozkłady barier dla układów ²⁰Ne + ...

słabe kanały reakcji nieuwzględnione w obliczeniach?
 np. transfery n,α, ...

 sprawdzenie hipotezy → pomiar przekrojów czynnych na transfer w zbadanych układach przy energii okołobarierowej energii pocisku

Przekroje czynne na transfery

masa jąder po transferze

Przekroje czynne na transfery

masa jąder po transferze

Przekroje czynne na transfery

masa jąder po transferze

- słabe kanały reakcji nieuwzględniczew w obliczeniach?
 np. transfery n,α, ...
 tylkowadkach obliczeniach?
- Inne słabe kanały reakcji? wzbudzenia niekolektywne (jednocząstkowe)

⁹⁰Zr, ⁹²Zr

różnice w gęstości poziomów jąder wzbudzonych

⁹⁰Zr, ⁹²Zr ⁵⁸Ni, ⁶⁰Ni, ⁶¹Ni

różnice w gęstości poziomów jąder wzbudzonych

Znaczenie wzbudzeń niekolektywnych

- w Metodzie Kanałów Sprzężonych (CC) w równaniu Schrödingera uwzględnia się <u>koherentną</u> superpozycję kilku stanów
- wzbudzenia stanów niekolektywnych prowadzą do nieodwracalnego "tłumienia" ruchu względnego do wielu wewnętrznych stopni swobody
- oddziaływanie układu kwantowego ze złożonym otoczeniem (poziomy jednocząstkowe) prowadzi do dekoherencji (zburzenia koherentnej superpozycji)
- dynamika dyssypacyjna (dekoherentna) → poza standardowym modelem kanałów sprzężonych

Jak uwzględniać wzbudzenia niekolektywne?

- nieodwracalna dynamika: A. Diaz-Torres (na razie brak modelu)
- "na siłę" S. Yusa, K. Hagino: PRC 85 (2012) 056404 (¹⁶O+²⁰⁸Pb)
- CC + teoria macierzy losowych (*random matrix theory*):
 - S. Yusa, K. Hagino: PRC 88 (2013) 054621 ← ²⁰Ne + ^{90,92}Zr
 - nasza praca PRC 100 (2019) 014616 ← ²⁰Ne + ^{90,92}Zr i ²⁰Ne + ^{58,60,61}Ni

Sprawdzenie hipotezy – pocisk ²⁴Mg

 $^{24}Mg - także jądro zdeformowane (6 cząstek <math>\alpha$)

 $\beta_2 = 0.59, \beta_3 = 0.23, \beta_4 = -0.03$

Rozkład barier ²⁴Mg + ^{90,92}Zr – eksperyment

Eksperyment: @ LNS Katania

Wiązka (Tandem): ²⁴Mg @ energy 68 MeV– 88.5 MeV

Tarcze: ^{90}Zr and $^{92}Zr,$ ${\sim}100~{\mu}g/{cm^2}$

Rozkład barier ²⁴Mg + ^{90,92}Zr – eksperyment

Eksperyment: @ LNS Katania, @ CHIMERA

Wiązka (Tandem): ²⁴Mg @ energy 68 MeV– 88.5 MeV

Tarcze: ^{90}Zr and $^{92}Zr,$ ~100 $\mu g/cm^2$

Detektory – układ CHIMERA: wsteczne: pierścienie @ 122,130,138,146,156,167 ° przednie: 4 detektory @ 29 °

⁹⁰Zr

⁹²Zr

⁹⁰Zr

⁹²Zr

⁹⁰Zr

⁹²Zr

ewolucja kształtu rozkładu barier wraz z liczbą uwzględnionych poziomów jednocząstkowych

Transfery? ²⁴**Mg** + ^{90,92}**Zr**

- $d\sigma/d\Omega$ na "pick-up" 1n i 2n niż w układzie z ²⁰Ne, ale:
 - wpływ transferu 1n jest zaniedbywalny

Transfery? ²⁴Mg + ^{90,92}Zr

- $d\sigma/d\Omega$ na "pick-up" 1n i 2n niż w układzie z ²⁰Ne, ale:
 - wpływ transferu 1n jest zaniedbywalny
 - sumaryczny przekrój czynny na wszystkie kanały transferu < niż ²⁰Ne+⁹⁰Zr
- wzbudzenia niekolektywne (jednocząstkowe) wyjaśniają "wygładzenie" rozkładu barier w ²⁴Mg+⁹²Zr

Podsumowanie i wnioski

- Wyznaczono rozkłady barier (D_{ge}) dla ²⁴Mg+^{90,92}Zr
 - pomiary dla wielu kątów → obserwacja zależności kątowej D_{qe}
- Dyssypacja (wzbudzenia niekolektywne) silnie wpływa na kształt rozkładu wysokości barier
- Pominiecie tego efektu i stosowanie uproszczonego modelu przy wyznaczaniu takich parametrów jak deformacje jąder w wielu przypadkach może prowadzić do błędnych wniosków

Co dalej?

- Pomiar rozkładów wysokości barier dla ²⁴Mg+^{90,92}Zr metodą fuzyjną – zaakceptowany eksperyment w LNS Catania i zbudowany/przetestowany filtr prędkości (filtr Wiena)
- W ramach realizacji grantu SHENG1
 - pomiar rozkładu wysokości barier w ²⁰Ne+^{90,92}Zr metodą fuzyjną (zainstalowanie filtru Wiena w Wwie, rozbudowa komory ICARE w ŚLCJ)
 - pomiar rozkładu wysokości barier z ²⁰Ne+^{92,94,95}Mo w ŚLCJ (zmodernizowana komora CUDAC)
 - pomiar rozkładu wyskości barier z wiązkami O, Mg, Ne(?) / tarczami Mo w CIAE (Pekin)
- Próba zrozumienia roli transferów

Eksperyment ²⁴Mg + ^{90,92}Zr – współpraca:

ŚLCJ UW: E. Piasecki, M. Kowalczyk, A. Trzcińska
Collaboration CHIMERA: G. Cardella, D. Dell'Aquila, E. De Filippo, S.
De Luca, B. Gnoffo, G. Lanzalone, I. Lombardo, Maiolino , N. S.
Martorana, A. Pagano , E. V. Pagano, S. Pirrone , G. Politi, L.
Quattrocchi, F. Rizzo , P. Russotto, A. Trifiro , M. Trimarchi , M. Vigilante

Dziękuję za uwagę

Slajdy dodatkowe

Filtr Wiena (testy w LNS Katania)

Idea pomiaru fuzji z wykorzystaniem filtru Wiena

T

Transfer probablity measurements: ICARE @ HIL

ToF @ ICARE chamber – transfer cross section measurement

