Machine learning applications in subatomic physics

Artur Kalinowski

Faculty of Physics University of Warsaw

Machine Learning

What is a Machine Learning (ML)?

Machine learning is a statistical analysis with complex and automatized methods.

- a main assumption is that a problem can be formulated as a quest for some probability distribution p(x), x a input data
- •machine learning development is mainly driven by so called "Data Mining" or "Big data": attempts to analyze large data sets available to "industry" in order to infer any possible knowledge
- image recognition is one of main applications driving ML development
- other driver is a NLP:
 Natural Language
 Processing

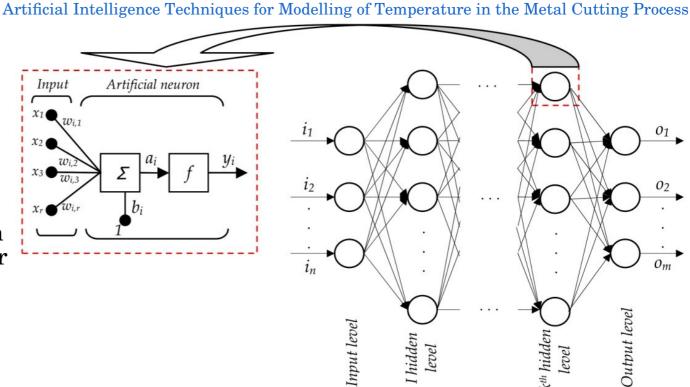
A neuron

(Artificial) Neural Network (ANN):

- invented in 1957
- •a system of connected units, neurons, performing averaging of input variables to obtain a number of output values
- averaging is performed at each neuron using a set of weights for its inputs, and "activation function"
- **training** process of finding the parameters minimizing some loss function: **f(output, expected value)**

often f(...) is a MSE: mean square error:

 $f(output, expected value) = \frac{1}{N} \sum (output - expected)^2$

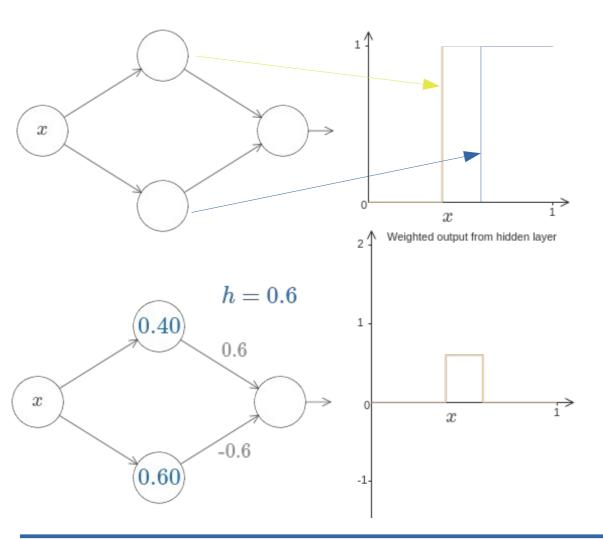


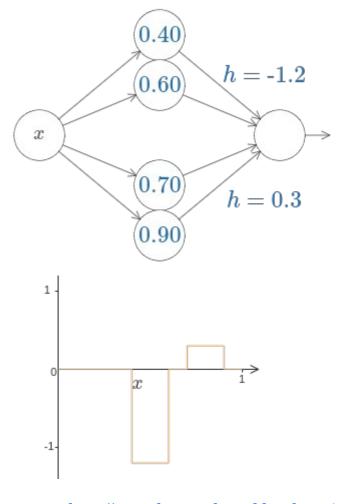
$$a_i = x_1 w_{i,1} + x_2 w_{i,2} + ... + x_r w_{i,r} + b_i$$

$$y_i = f\left(a_i
ight) = f\left(\sum_{j=1}^r x_j w_{i,j} + b_i
ight)$$

Neural Network approximator

The universal approximation theorem: any smooth function can be approximated with a NN with a single hidden layer with finite number of neurons.

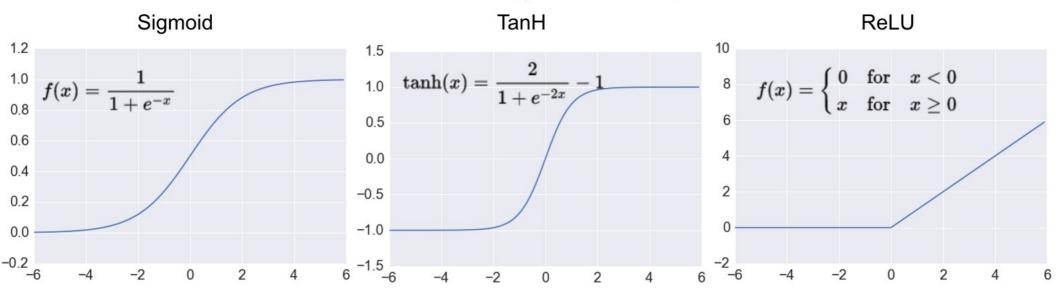




http://neuralnetworksanddeeplearning.com

Deep Learning advent

$$y_i = f\left(a_i
ight) = f\left(\sum_{j=1}^r x_j w_{i,j} + b_i
ight)$$



http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Activation function:

• Rectified Linear Unit (ReLU): nowadays a most common activation function.

More computing power:

• Graphical Processing Units (GPUs) provide up to 100x faster training

More training data:

• Big memory, big CPU, big GPU allows use of BIG training datasets

A regression

K. Rolbiecki (IFT UW) et. al.

Reggression: instead for looking for a full p(x), x - a input data, one seeks only a mean or median of p(x)

The task: calculate NLO cross section for a MSSM process for any, out of 19, parameter value.

The current NLO codes (Prospino) take O(3') to calculate $\sigma(pp \rightarrow \widetilde{\chi}^+ \widetilde{\chi}^-)$

The neural network was used to parametrise NLO cross sections from Prospino in pMSSM-19.

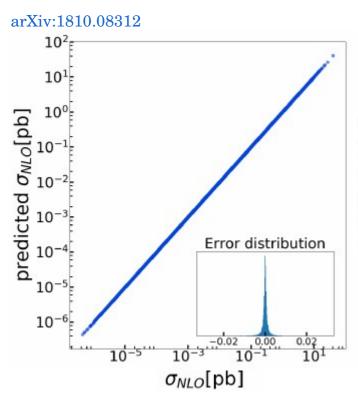
The data: 10⁷ points in dim=19 parameter space of LO an 10⁵ of NLO cross sections

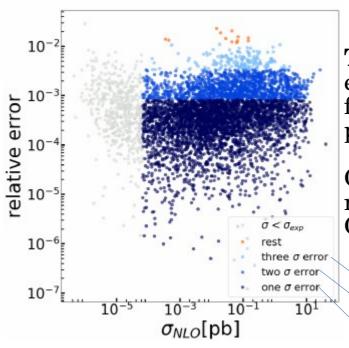
A regression model

K. Rolbiecki (IFT UW) et. al.

The model: 8 hidden layers with 100 neurons each for LO parametrisation 8 hidden layers with 32 neurons each for NLO/LO k-factor parametrisation Loss function: Mean Absolute Percentage Error:

$$MAPE = \frac{1}{N} \sum_{i=0}^{N} \left| \frac{y_{\text{true,i}} - y_{\text{pred,i}}}{y_{\text{true,i}}} \right|$$





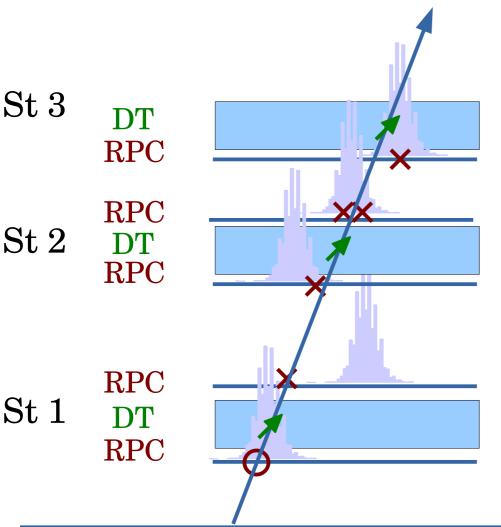
The result: cross section evaluated with precision of <2% for 95% of parameter space points.

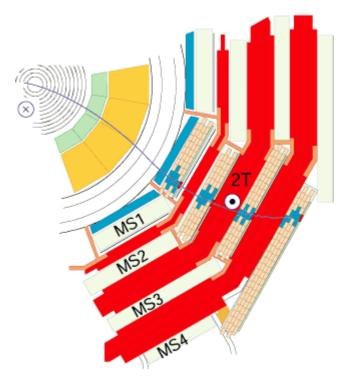
Computing time 5-6 orders of magnitude faster running on CPU

99.7% of points 95% of points 68% of points

CMS@Warsaw ML activities: OMTF

The task: use a NN model to reconstruct p_T at the CMS level 1 muon trigger





• current algorithm (naive Bayes approximation): given hit pattern, choose a p_T that maximizes the sum of hit probabilities in each layer. Neglects any interlayer correlations

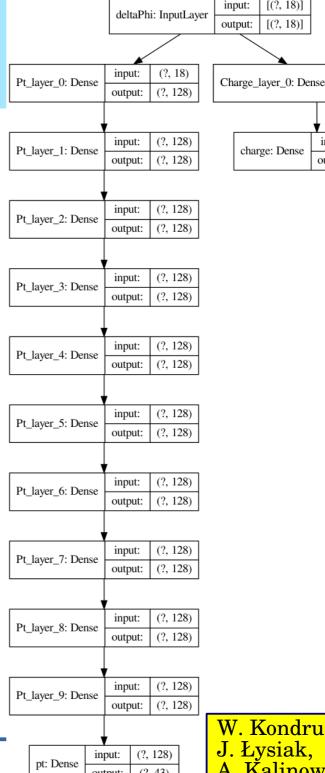
OMTF NN model

The model:

- 10 fully connected layers, 128 neurons each
- output 43 neurons corresponding to 43 bins in p_{π}

The result:

• probability that a given candidate has p_{T} in given rage.



W. Kondrusiewicz, J. Łysiak, A. Kalinowski

[(?, 18)]

[(?, 18)]

charge: Dense

input:

output:

input:

output:

(?, 18)

(?, 32)

(?, 32)

(?, 1)

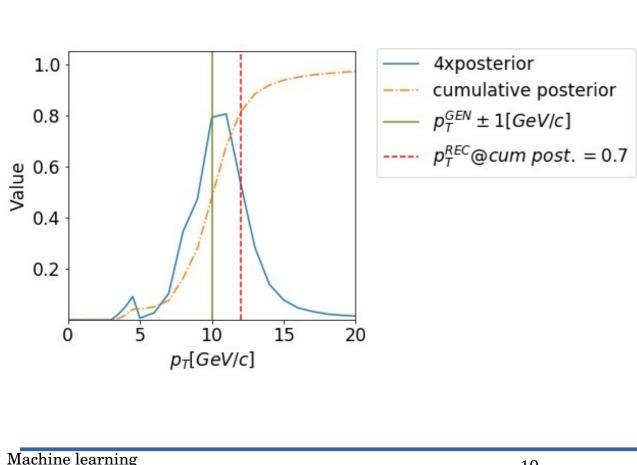
OMTF NN model

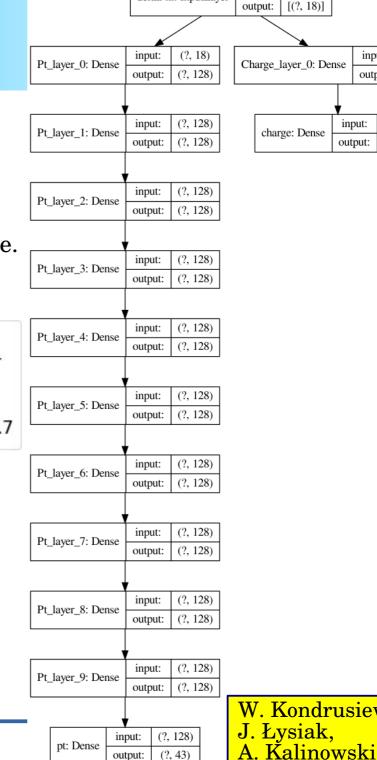
The model:

- 10 fully connected layers, 128 neurons each
- output 43 neurons corresponding to 43 bins in p_r

The result:

• probability that a given candidate has p_{T} in given rage.





W. Kondrusiewicz, J. Łysiak,

[(?, 18)]

[(?, 18)]

charge: Dense

(?, 18)

(?, 32)

(?, 32)

(?, 1)

input:

output:

input:

output:

input:

deltaPhi: InputLayer

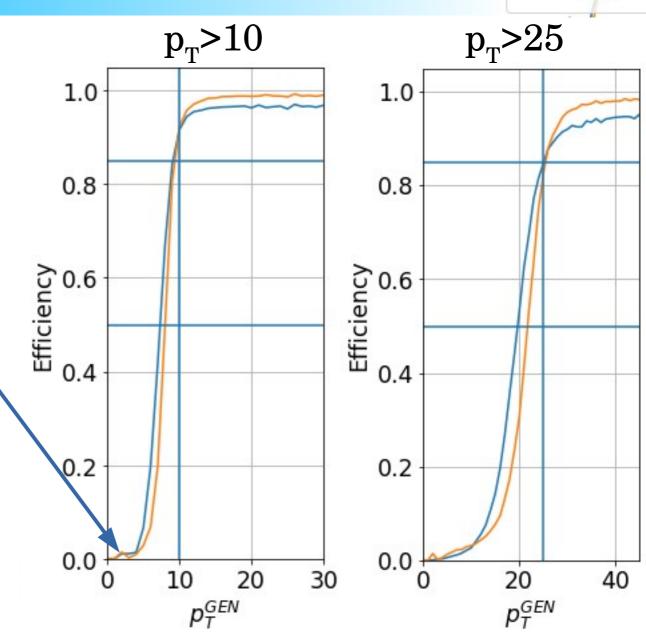
OMTF NN model

The trigger:

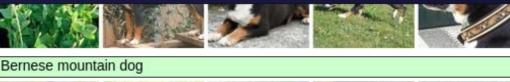
does a candidate have p_T>X?

Human vs Machine:

- overall ML model works better
- still there are some specific cases, better treated by a model invented by a human
- in this case those rare specific cases are crucial for the model performance
- other issue is ML model implementation in trigger hardware (FPGA)



A categorisation task



Greater Swiss Mountain dog

Appenzeller

Show answer

Show google prediction

mastiff

Tibetan mastiff

Tibetan mastiff

GoogLeNet predictions:

Tibetan mastiff

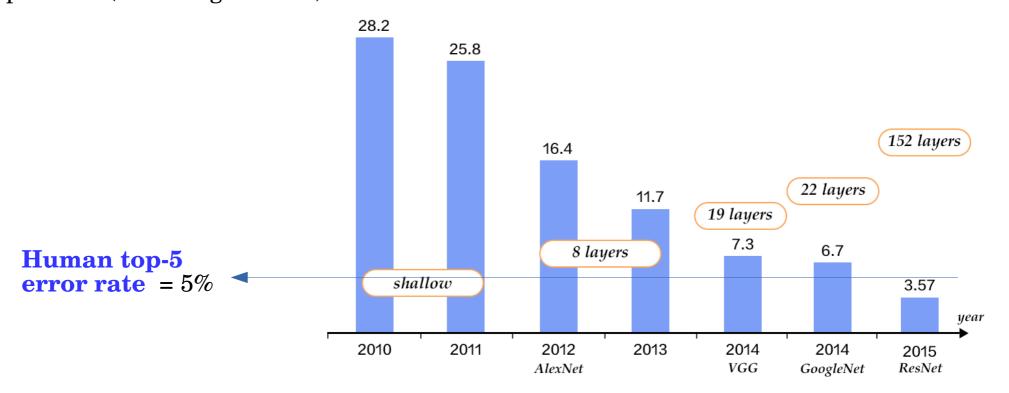
Bernese mountain dog

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Deep Learning

ImageNet is a data set for Large Scale Visual Recognition Challenge (ILSVRC) started in 2010

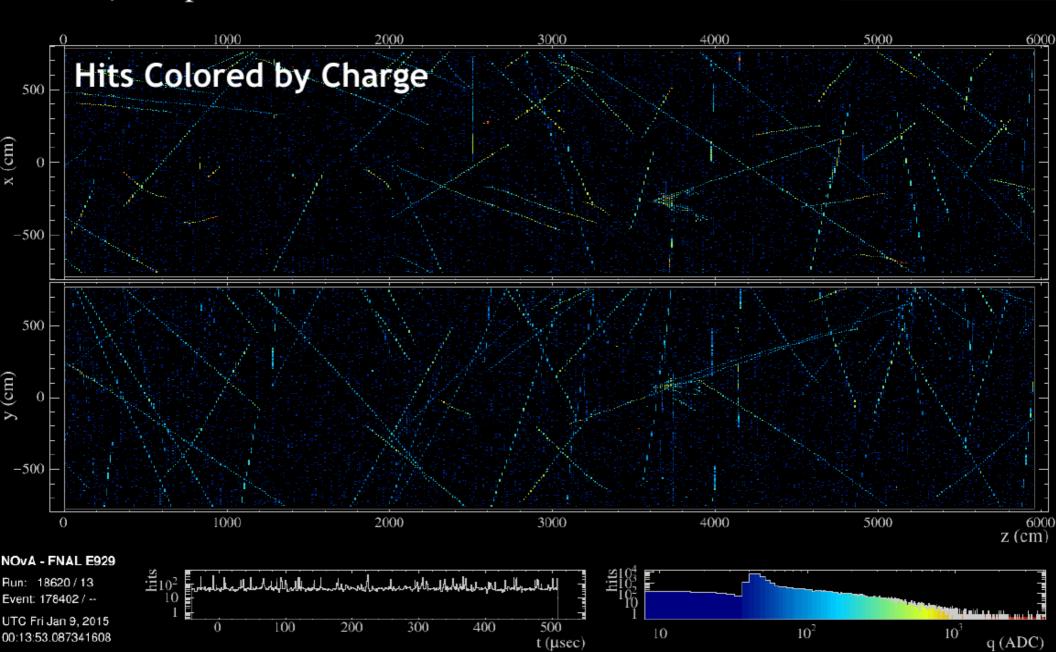
top-5 error rate – fraction of images where the correct label in not within 5 most probable (according to DNN)

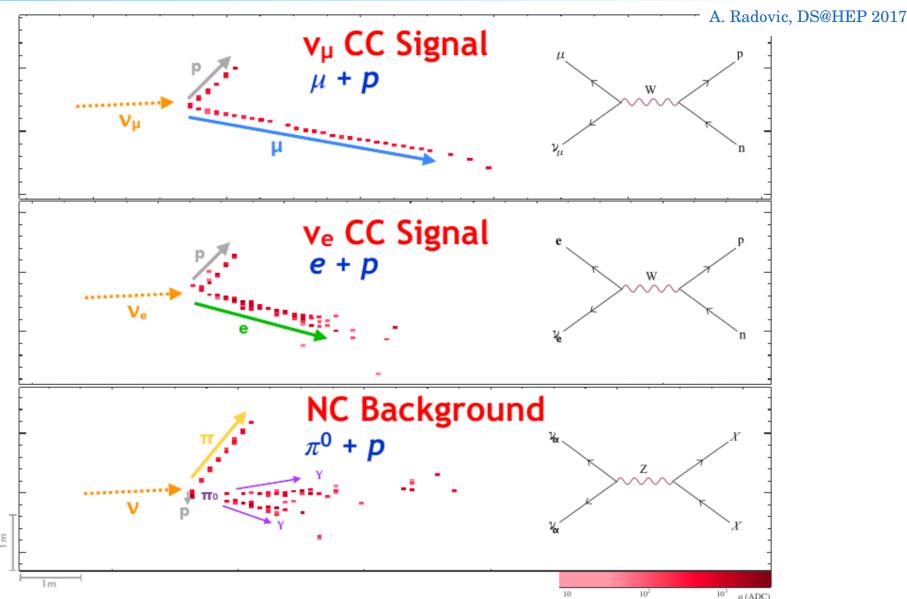


http://book.paddlepaddle.org/03.image_classification/

550 μ s exposure of the NOvA Far Detector

A. Radovic, DS@HEP 2017

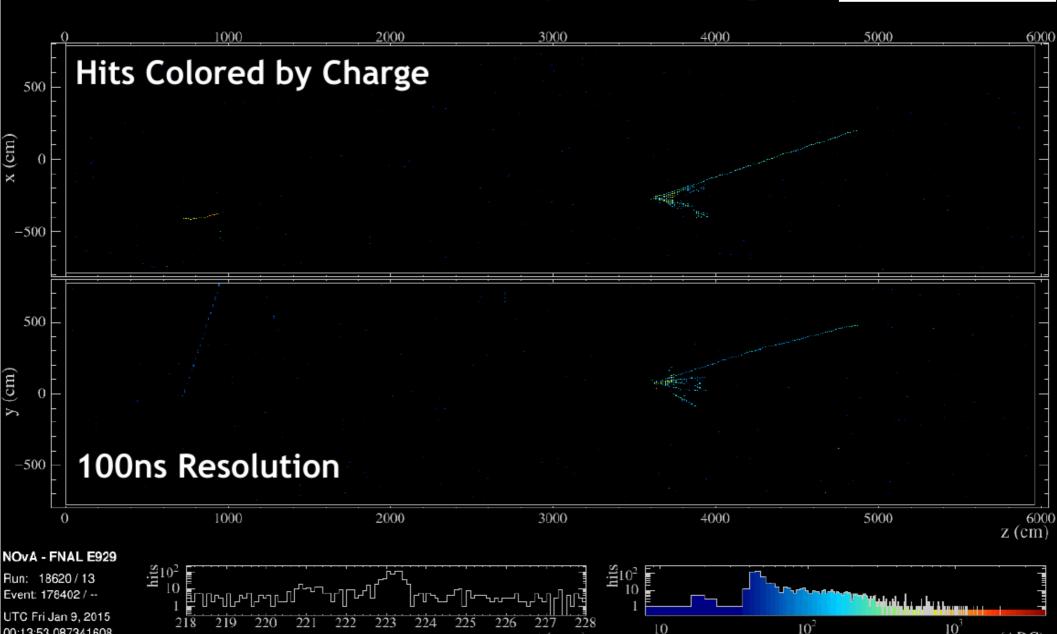




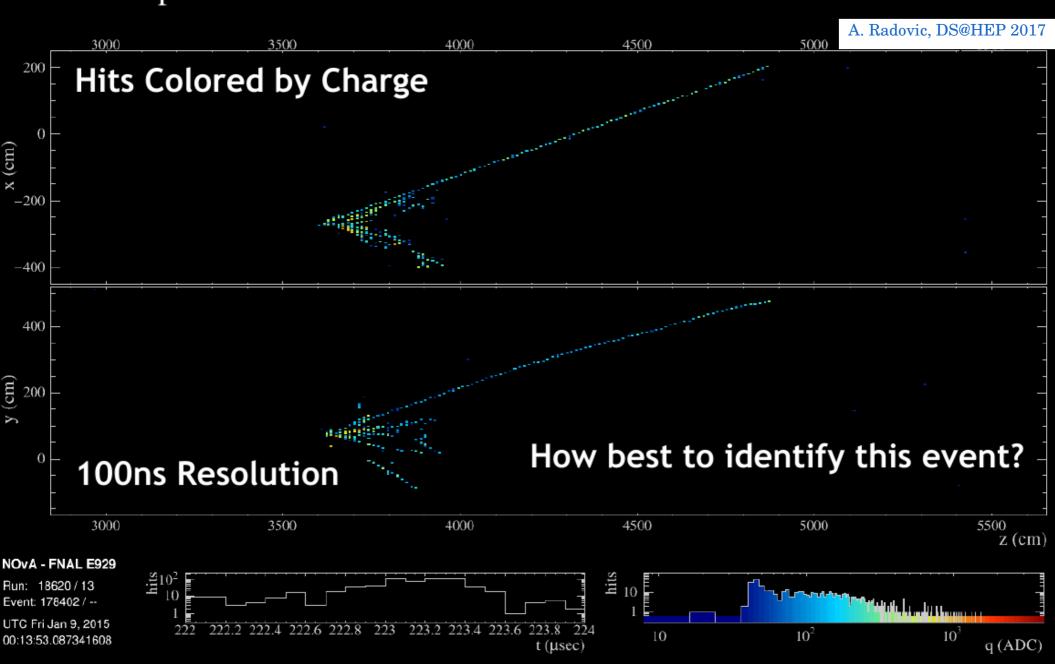
1 radiation length = 38cm (6 cell depths, 10 cell widths)

Time-zoom on 10 μ s interval during NuMI beam pulse

A. Radovic, DS@HEP 2017



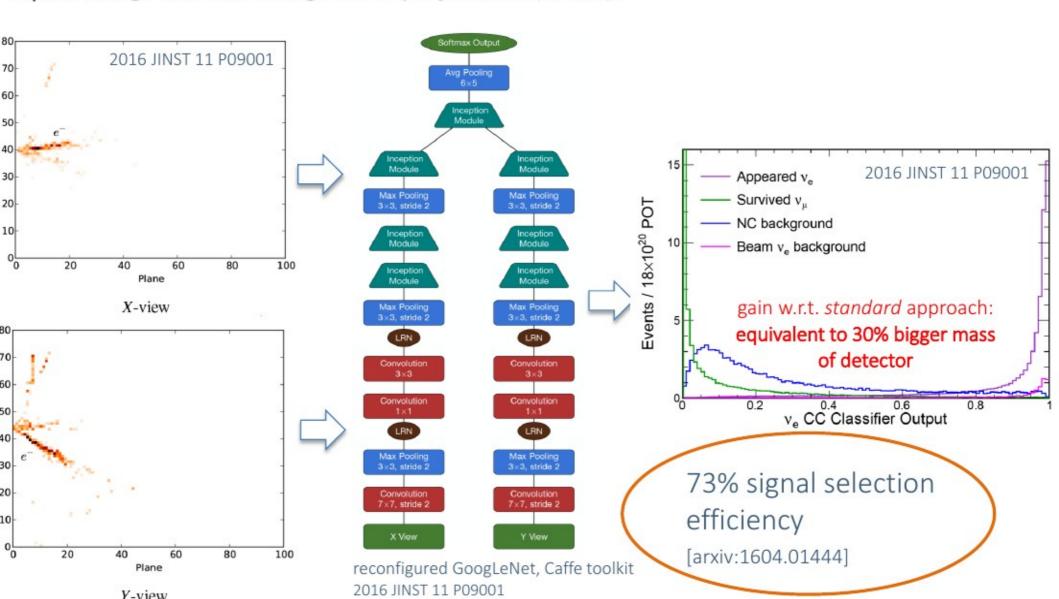
Close-up of neutrino interaction in the NOvA Far Detector



CNN applied to $v_{\rm e}$ selection in NOvA

R. Sulej, CERN-EP/IT Data science seminar

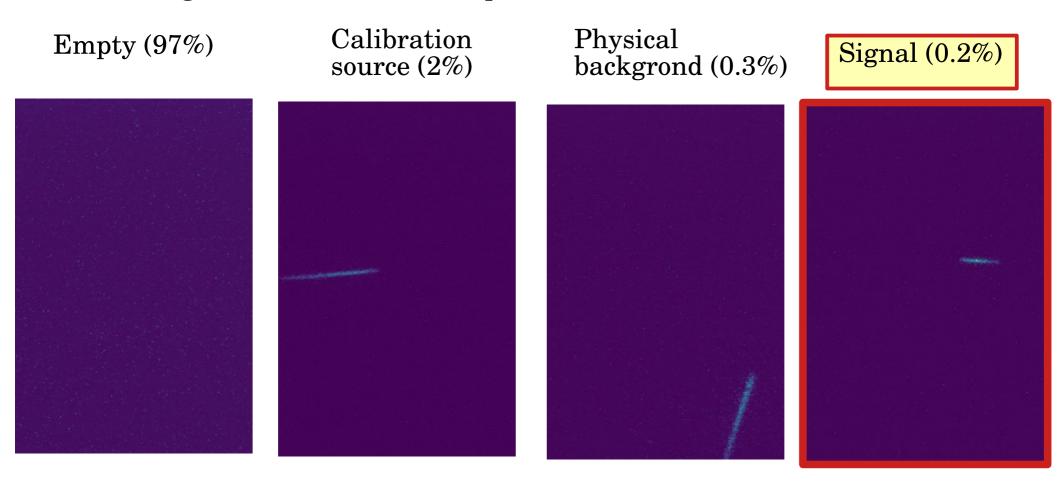
Input: image-like raw charge in 2D projections (NOvA),



DNN in nuclear physics

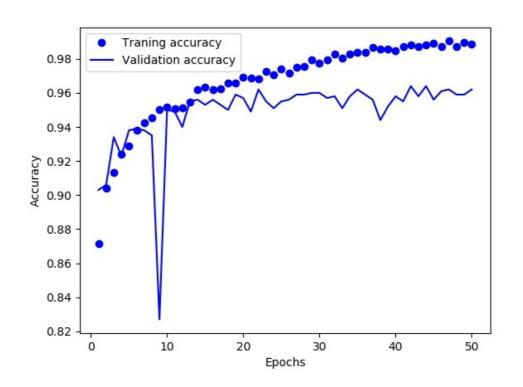
The data: 3 ·10⁶ nuclear reaction photos from the OTPC

The task: assign one of five labels to a photo:



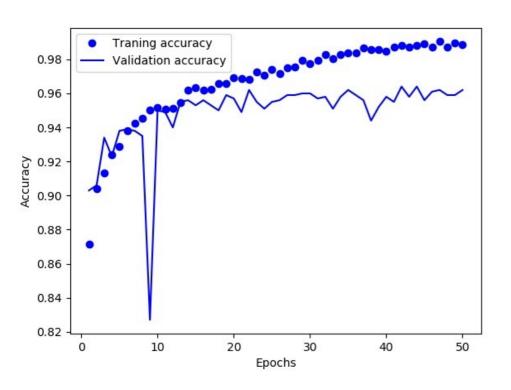
DNN in nuclear physics

A preliminary result: 96% events with correct category assignment

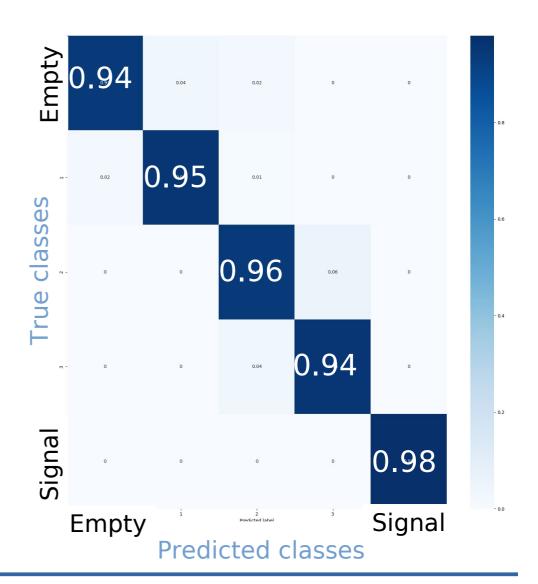


DNN in nuclear physics

A preliminary result: 96% events with correct category assignment



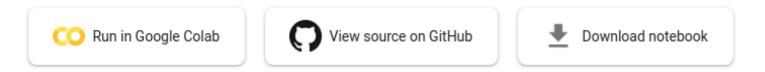
Confusion matrix – visualisation of true class ⇔ predicted class correspondence



How to get started?

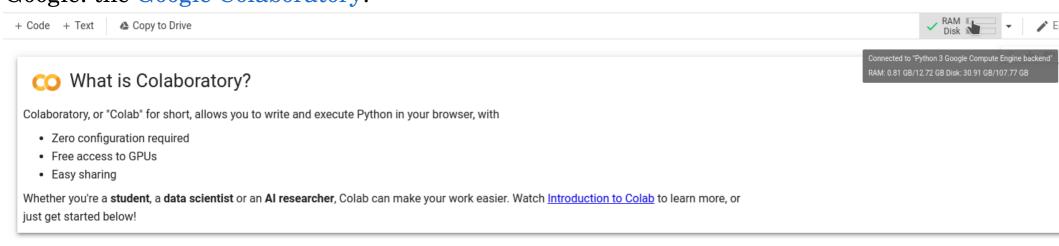
The software: many packages available on the market, all use Python. I use TensorFlow from Google. Many, large pretrained networks are available there:

Transfer learning with a pretrained ConvNet



In this tutorial, you will learn how to classify images of cats and dogs by using transfer learning from a pre-trained network.

The hardware: one can start with just a bare web browser and use cloud resources from Google: the Google Colaboratory:



How to get started?

A small training: for not too big network, with ~1M parameters the GPUs do not give too much speedup wrt. a fast CPU. For an everyday work I just use my desktop: Core i7 2700, 16 GB RAM

A large training: for a serious training one can use the PLGrid infrastructure. Requires registration and application for a computing grant. The service is free for all members of Polish scientific community.

At the moment I use prometheus cluster (located at AGH) with NVIDIA K40 GPUs:

	2160	2	12	24	Intel Xeon E5-2680 v3	2,5	128	5,33	haswell_2500mhz		
Prometheus	72	2	12	24	Intel Xeon E5-2680 v3	2,5	128	5,33	haswell_2500mhz,tesla_k40d	C0	

4							
Your active P	Your active PL-Grid grants on THIS site:						
+	+	+	+	+	+	++	
						Used Storage [GB] Group	
cmsml3 (*)	2020-01-19	2020-12-30	10 000	2 557	100	37 plggcmsml	
				,	,		

Conclusions

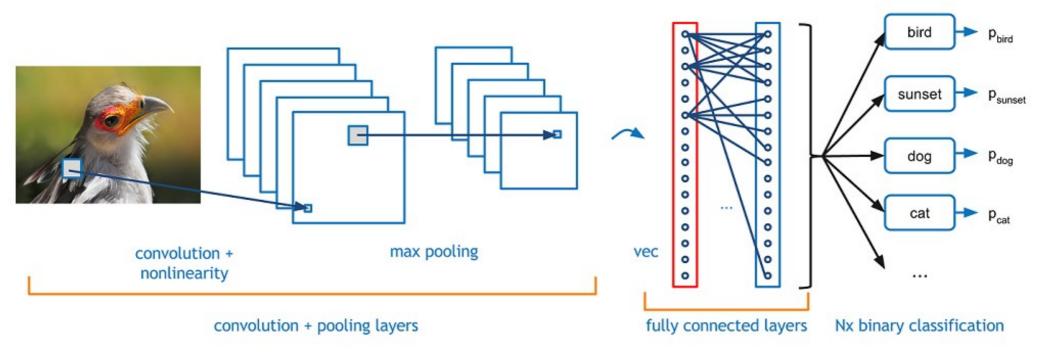
- Machine learning had made a huge development in last 5 years
- Ideas from industry are being extensively used within science
- ML is the cutting edge of statistical data analysis. (though not always as conscious as traditional approach)
- A Center for Machine Learning will be organized at Ochota Campus as a part of "Inicjatywa doskonałości
 - uczelnia badawcza". Launch expected in October

https://xkcd.com/1838/

Backup

A categorisation model

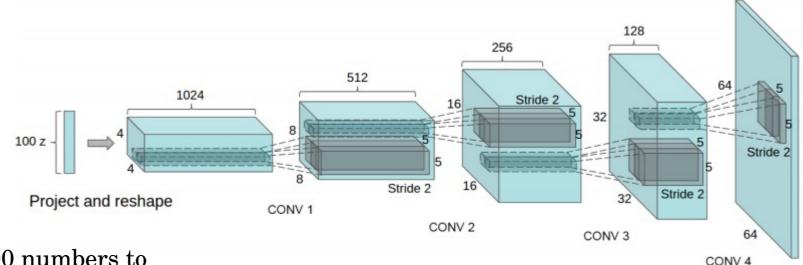
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



- a typical network (usually called a model) trained for image recognition consists of number of interleaved layers of convolution and pooling → extraction of higher and higher level features
- final layers are responsible for decision making using the identified features

The task: code an RGB image as a point in R^{100} , then generate new images by drawing random points in R^{100} .

The task: code an RGB image as a point in R^{100} , then generate new images by drawing random points in R^{100} .

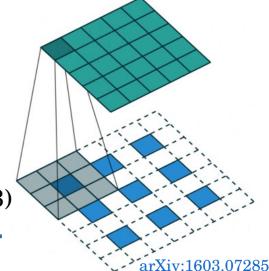


Step 1: upscale 100 numbers to necessary number of pixels, eg. 64x64x3 = 12228 using a series of transposed convolutions. Each pixel has discrete values in 0-255 range.

output (6x6)

Transposed convolution: resolution upscaling

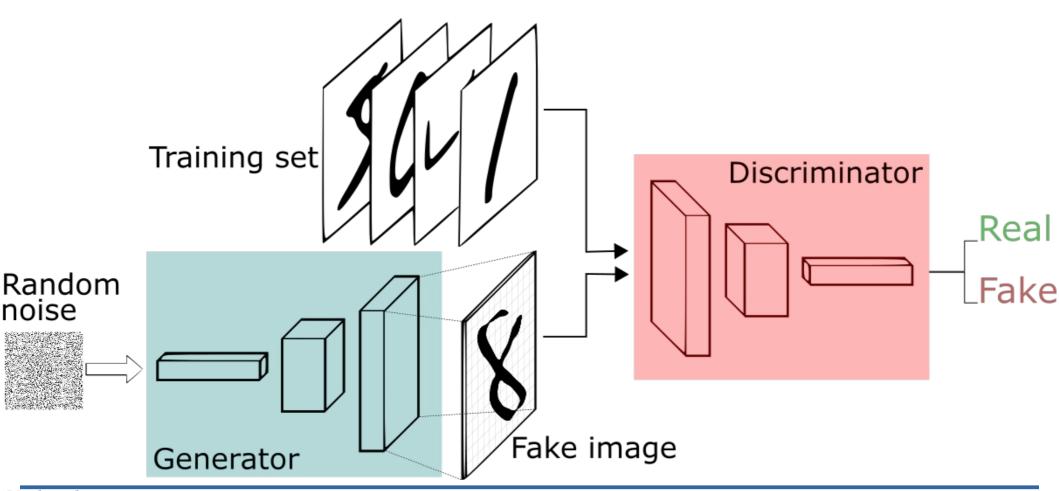
input (3x3)



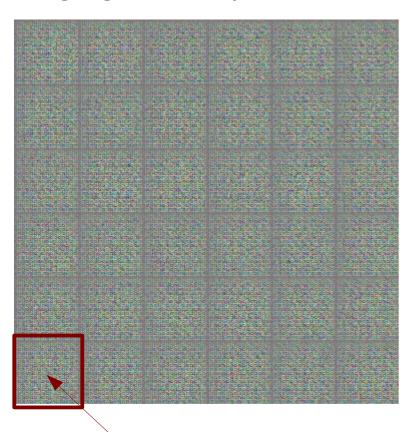
G(z) arXiv:1511.06434

Step 2: find mapping (= convolutions weights) from R^{100} to a subspace of R^{12228} . Use two adversarial networks:

G – generator making an image from random noise D – discriminator deciding if an image is real or generated



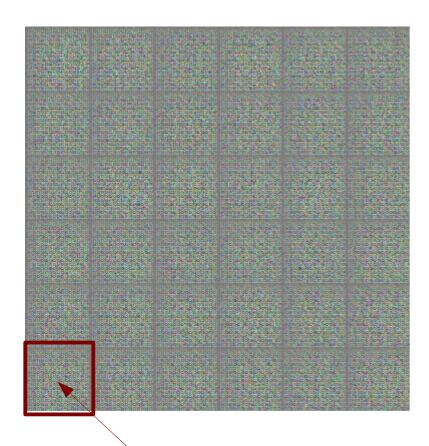
Starting point: random noise images generated by G



a single image

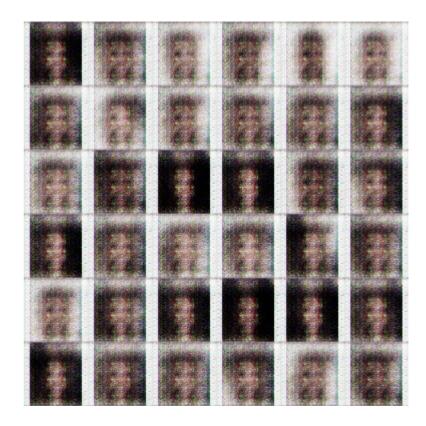
http://www.timzhangyuxuan.com/project_dcgan

Starting point: random noise images generated by G



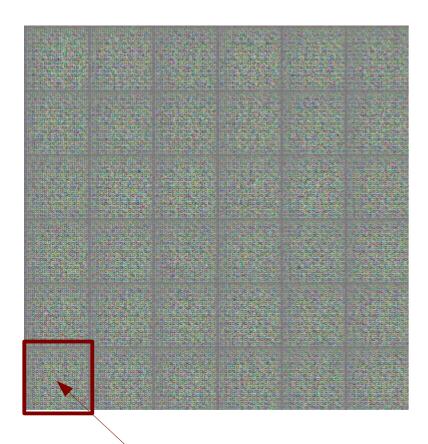
a single image

Epoch 150: 150 times transverse library of 200k real human face images.



http://www.timzhangyuxuan.com/project_dcgan

Starting point: random noise images generated by G



a single image

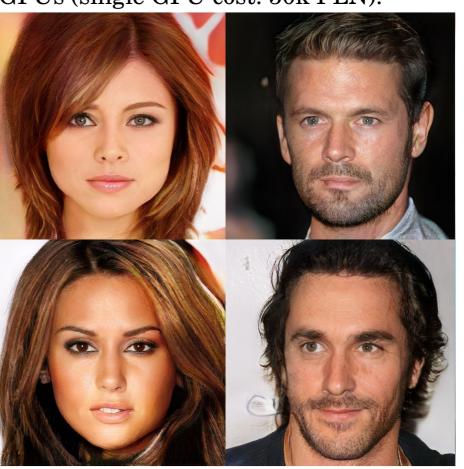
Epoch 16500: 16500 times transverse library of 200k real human face images.

http://www.timzhangyuxuan.com/project_dcgan

Recent advance: progressive GAN – generate high resolution images by iterative resolution increase of generated image during the training process **Number of parameters:** 23.1M in Generator and Discriminator networks respectively **Training time:** 4 days on 8 Tesla V100 GPUs (single GPU cost: 50k PLN).

2015 2016 64x64 64x64

2017 128x128



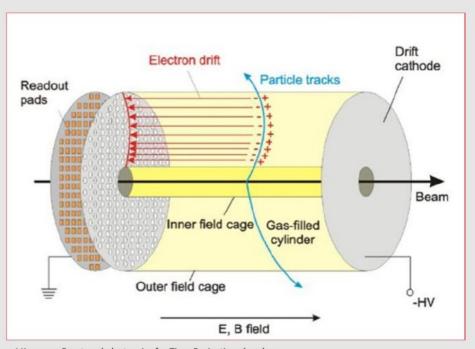
2017 1024x1024

arXiv:1710.10196

Example: simulation of particle passage through a detector: here ALICE TPC (work by group from the Warsaw University of Technology)

Particle clusters in TPC

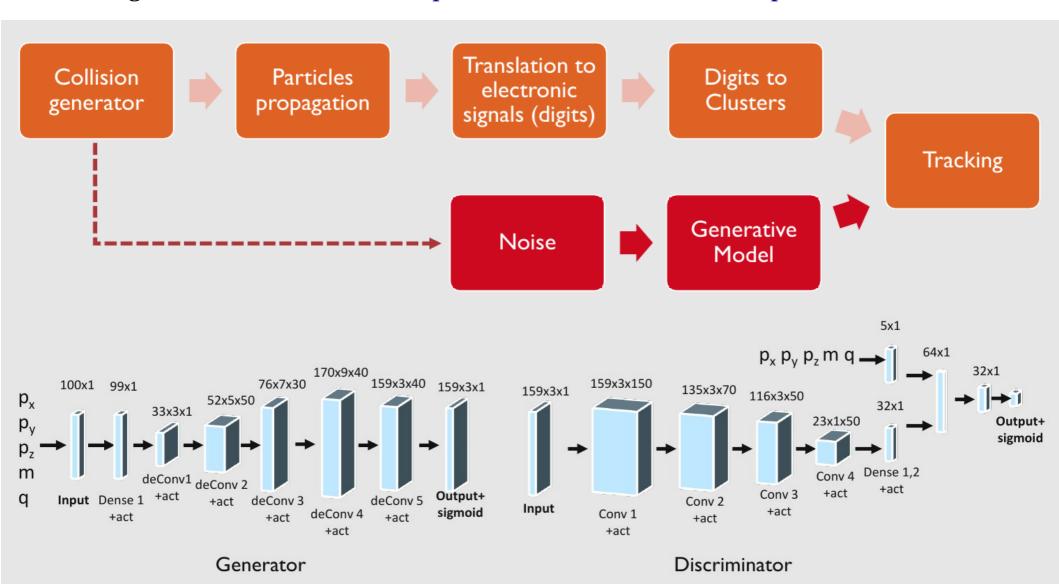
- Points in 3-dimensional space, together with the energy loss, which were presumably generated by a particle crossing by.
- Input for particle tracks generation
- Up to 159 points per particle
- Possible values restricted by the detector size ~ 5m x 5m x 5m
- No clusters in the inner field cage



I.Konorov, Front-end electronics for Time Projection chamber

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf and the contribution of the

The idea: substitute time consuming full Geant 4 simulation by a GAN trained to generate "track images" = 100 + 4 dimensional paramatrisation of Geant4 output



Quality criterion: mean square distance between generated hits and an ideal helix.

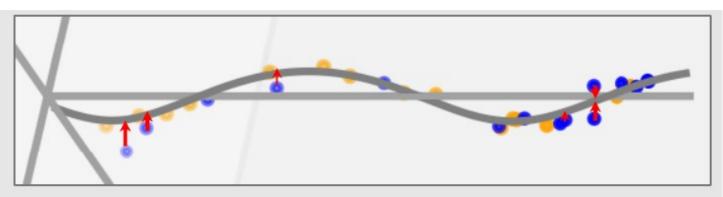
MSE visualisation:

Red - error

Grey- ideal helix

Orange - original clusters

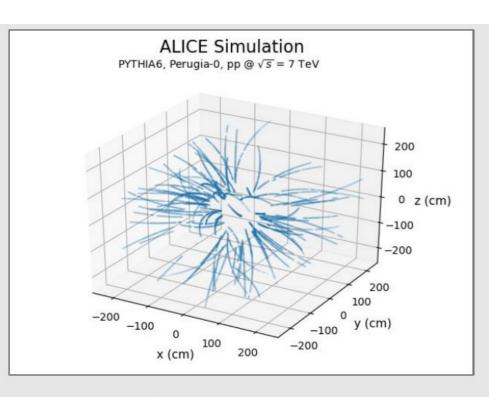
Blue - generated clusters



Speed increase: factor 25 for running GAN on CPU. Expected factor 250 for running on GPU

Method	Mean MSE (mm)	Median MSE (mm)	Speed-up
GEANT3	1.20	1.12	ı
Random (estimated)	2500	2500	N/A
condLSTM GAN	2093.69	2070.32	100
condLSTM GAN+	221.78	190.17	100
condDCGAN	795.08	738.71	25
condDCGAN+	136.84	82.72	25

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf



ALICE Simulation

PYTHIA6, Perugia-0, pp @ √s = 7 TeV

200
100
0 z (cm)
-200
100
200
100
y (cm)
x (cm)
200
100
200
200

Original event

Generated event

https://indico.cern.ch/event/587955/contributions/2937515/attachments/1683183/2707645/CHEP18.pdf