

$\gamma\text{-ray}$ spectroscopy at LNL: past, present and future

Alain Goasduff, Ph.D. - alain.goasduff@lnl.infn.it April 23rd, 2020

Why studying nuclear structure?

A first glance to the nuclear structure: the energy of the first 2^+ in even-even nuclei

Evolution of the nuclear structure

How to study it?

How can we study the nuclear structure?

One of the easiest way to study the nucleus $\implies \gamma$ -spectroscopy:

- Relatively simple and well-known operator
- In a first (and good) approximation: 1-body operator
- Gives access to:
 - Level scheme $\implies \gamma$ -ray energy
 - Spin and parity of the states $\implies \gamma$ -ray angular distribution
 - Electromagnetic moments of the excited states \implies Several experimental methods ...

Quantities can be compared to theoretical models once wave functions are computed.

High resolution spectroscopy

- But generally limited efficiency
- Based on semi-conductor
- Low to medium energy γ -rays
- Complex low energy structure

High efficiency spectroscopy

- But generally limited resolution
- Based on inorganic scintillation materials
- Medium to high energy γ -rays
- Resonant structures

New devices reuniting the two aspects: The AGATA tracking array $\gamma\text{-spectroscopy}$ at LNL

$\gamma\text{-spectroscopy}$ at LNL - A long story (short)

GASP

EUROBALL

CLARA

- 80 % of nuclear physics research
- 50 % γ-ray spectroscopy
- Neutron-deficient and neutron-rich nuclei

AGATA

$\gamma\text{-spectroscopy}$ at LNL - A long story (short)

GASP

CLARA

EUROBALL

- 80 % of nuclear physics research
- 50 % γ-ray spectroscopy
- Neutron-deficient and neutron-rich nuclei

AGATA

Exploring the low energy structure of the nuclei

GASP experiment Deep-inelastic reaction ⁶⁴Ni + ¹³⁰Te

Large increase of the $E(2^+)$ at N = 40 \rightarrow subshell closure \rightarrow Evolution of the magicity far from sta-

→ Evolution of the magicity far from stability

Coupling the γ -spectrometer with complementary setup

Deep-inelastic and multi-nucleon transfer reaction \Longrightarrow Population of moderately neutron-rich nuclei BUT:

- Identification in thick target experiment is limited
- Doppler-broadening
- What to do with weak reaction channel?

CLARA γ -ray array 25 Compton-suppressed Ge Clovers $\epsilon = 3\%$ for single 1 MeV γ PRISMA Magnetic spectrometer $\Omega \ = \ 80 \ msr$ Z, A, q clean identification of the fragments

From the N = 40 subshell closure down to an island of deformation

Neutron number (N)

UNIWERSYTET WARSZAWSKI

42

Going deeper into the nuclear structure with the electromagnetic moment measurement

G. Anil Kumar, D. Bazzecce,¹¹³ M. Bellizo,¹ D. Bondan,¹¹ P. Bedarzeyk, F. Roberno,¹¹ L. Berdar, B. Brichenber, T. Borno,¹¹ L. Berdarzeyk, B. Benno,¹¹ L. Berdarzeyk, B. Benno,¹¹ L. Berdarzeyk, B. Benno,¹¹ L. Berdarzeyk, B. Berno,¹¹ L. Berdarzeyk, B. Coccuri, ⁴ B. Brichenber,¹¹ A. Coccuri,⁴ P. Coccuri,⁴ R. Berdarzeyk, B. Coccuri,⁴ A. Cocuri,⁴ R. Coccuri,⁴ P. Coccuri,⁴ R. D. Doberguellin,²² B. Dubry,¹¹ Eberda, ¹¹ E. Fernar,¹¹ B. Bernal,⁴ S. Fenzi,⁴ S. Bernal,⁴ S. Bernal,⁴ S. Bernal,⁴ R. Coccuri,⁴ R. Coccuri,⁴ R. Coccuri,⁴ R. Cocuri,⁴ R. Cocur

UNIWERSYTET WARSZAWSKI

Going deeper into the nuclear structure with the electromagnetic moment measurement

UNIWERSYTET WARSZAWSKI

GALILEO: The working horse

Phase 1 - The present implementation

25 HPGe (GASP) + AC + Complementary detectors

GALILEO benefits from the developments made for AGATA and GASP detectors:

- Dedicated differential pre-amplifier with fast-reset capabilities
- ADC: DigiOpt-12

A. Pullia et al., 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

A. Pullia et al., 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)

D. Barrientos et al., IEEE Transactions on Nuclear Science 62 (2015) 3134

GALILEO benefits from the developments made for AGATA and GASP detectors:

- Dedicated differential pre-amplifier with fast-reset capabilities
- ADC: DigiOpt-12

A. Pullia et al., 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

A. Pullia et al., 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)

D. Barrientos et al., IEEE Transactions on Nuclear Science 62 (2015) 3134

GALILEO benefits from the developments made for AGATA and GASP detectors:

- Dedicated differential pre-amplifier with fast-reset capabilities
- ADC: DigiOpt-12
- Processing: Global Gigabit Processor (GGP)

A. Pullia et al., 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)

D. Barrientos et al., IEEE Transactions on Nuclear Science 62 (2015) 3134

A. Pullia et al., 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

GALILEO benefits from the developments made for AGATA and GASP detectors:

- Dedicated differential pre-amplifier with fast-reset capabilities
- ADC: DigiOpt-12
- Processing: Global Gigabit Processor (GGP)
- Synchronization: Global Trigger and Synchronization (GTS)

A. Pullia et al., 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)

A. Pullia et al., 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)

D. Barrientos et al., IEEE Transactions on Nuclear Science 62 (2015) 3134

GALILEO readout

GALILEO readout

GALILEO readout

First experiments

Experimental campaign: Started in fall 2015

Ancillaries

GALILEO complementary detectors

Study of weak reaction channels with stable beams: High efficiency + High resolving power + High CR capabilities

- Light charged particle detectors Euclides, GALTRACE
- Neutron detector
 NeutronWall
- Lifetime measurements
 Dedicated plunger IKP-LNL
- Heavy-ion detectors: Spider
- Fast timing or high-energy γ-ray detector Large volume LaBr₃

Commissioned dets

GALILEO complementary detectors

Study of weak reaction channels with stable beams: High efficiency + High resolving power + High CR capabilities

- Light charged particle detectors Euclides, GALTRACE
- Neutron detector
 NeutronWall, NEDA
- Lifetime measurements Dedicated plunger IKP-LNL
- Heavy-ion detectors: Spider, RFD, PLASTIC
- Fast timing or high-energy γ-ray detector Large volume LaBr₃, FT LaBr₃

Light charged particles: EUCLIDES

- 110 Silicon detectors (80 % of 4π)
- $\epsilon_{lpha}\sim$ 30% ; $\epsilon_{p}\sim$ 50%
- \sim 100% working, \sim 80 keV FWHM
- New compact pre-amplifiers
- Digital electronics
- Trigger-less mode

WARSZAWSK

Channel selection and Doppler correction

- Digital trigger
- Online trapezoidal filter 3 μ s
- Offline short trace filtering 0.5 μ s
- Trigger-less mode
- Max CR \sim 40 kHz

- Digital trigger
- Digital CFD
- Z separation

D. Testov et al., Eur. Phys. J. A 55 (2019) 47

Neutron detection: NWALL-NEDA

The NeutronWall array at LNL:

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout

Ö. Skeppstedt et al., Nucl. Inst. Meth. A 421 (1999) 531.

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout

Ö. Skeppstedt et al., Nucl. Inst. Meth. A 421 (1999) 531.

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout
 - Apparition of additional structure
 - Large dead time (VME max readout 8 kHz)

Ö. Skeppstedt et al., Nucl. Inst. Meth. A 421 (1999) 531.

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout
 - Apparition of additional structure
 - Large dead time (VME max readout 8 kHz)
- Possible solution:
 - Digitized output of the analogue electronic

Ö. Skeppstedt et al., Nucl. Inst. Meth. A 421 (1999) 531.

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout
 - Apparition of additional structure
 - Large dead time (VME max readout 8 kHz)
- Possible solution:
 - Digitized output of the analogue electronic
 - Trigger-less readout
 - QVC has to be dropped

Ö. Skeppstedt et al., Nucl. Inst. Meth. A 421 (1999) 531.
The NeutronWall array at LNL:

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout
 - Apparition of additional structure
 - Large dead time (VME max readout 8 kHz)
- Possible solution:
 - Digitized output of the analogue electronic
 - Trigger-less readout
 - QVC has to be dropped

Coupling NEDA with GALILEO?

Ö. Skeppstedt et al., Nucl. Inst. Meth. A **421** (1999) 531. J.J Valiente-Dobón et al., Nucl. Inst. Meth. A **927** (2019) 81.

Neutron detection: NWALL-NEDA

The NeutronWall array at LNL:

- 45 liquid scintillators detectors
- Analogue electronic providing three signals: ToF, ZCO and QVC
- VME readout
 - Apparition of additional structure
 - Large dead time (VME max readout 8 kHz)
- Possible solution:
 - Digitized output of the analogue electronic
 - Trigger-less readout
 - QVC has to be dropped

Coupling NEDA with GALILEO?

- NUMEXO2 readout
- GTS compatibility
- DAQ modification

Ö. Skeppstedt et al., Nucl. Inst. Meth. A **421** (1999) 531. J.J Valiente-Dobón et al., Nucl. Inst. Meth. A **927** (2019) 81.

UNIWERSYTET WARSZAWSKI

Lifetime measurements with the plunger techniques

LNL plunger developed in collaboration with IKP Cologne. Constrains:

- Reaction chamber geometry
- Coupling to other ancillaries (Euclides, ...)
- Shadowing of the motor

\Rightarrow Compact design

C. Müller-Gatermann et al., Nucl. Inst. Meth. A 920 (2019) 95

D. Testov et al, submitted to Nucl. Inst. Meth. A

Lifetime measurements with the plunger techniques

LNL plunger developed in collaboration with IKP Cologne. Constrains:

- Reaction chamber geometry
- Coupling to other ancillaries (Euclides, ...)
- Shadowing of the motor

\Rightarrow Compact design

C. Müller-Gatermann et al., Nucl. Inst. Meth. A 920 (2019) 95

D. Testov et al, submitted to Nucl. Inst. Meth. A

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)

S. Capra et al., Nucl Inst. Meth. A 935 (2019) 178.

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)
 - but 245 channels ...

S. Capra et al., Nucl Inst. Meth. A 935 (2019) 178.

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)
 - but 245 channels ...
 - Now in production

S. Capra et al., Nucl Inst. Meth. A 935 (2019) 178.

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)
 - but 245 channels ...
 - Now in production
- First in-beam test: July 2019

S. Capra et al., Nucl Inst. Meth. A 935 (2019) 178.

- Versatile array to be coupled with:
 - the plunger
 - SPIDER
 - ...
- Compactness of the pre-amps:
 - ASIC Pre-amps (Uni. Milano / INFN Milano)
 - but 245 channels ...
 - Now in production
- First in-beam test: July 2019
- 4 exp. submitted to the next LNL PAC

S. Capra et al., Nucl Inst. Meth. A 935 (2019) 178.

Up to $412 \times 2 \text{ cm}^2 \text{ E-}\Delta\text{E}$ pads telescopes

- ΔE layer:
 - 200 µm
 - 60 Pads (4×4 mm²)
 - 61 signals (back + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 5 signals (back + pads)

Up to 4 12×2 cm² E- Δ E pads telescopes

- ΔE layer:
 - 200 µm
 - 60 Pads (4×4 mm²)
 - 61 signals (back + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 5 signals (back + pads)
- 1 Telescope \Longrightarrow 2 GALILEO digitizers

Up to 4 12×2 cm² E- Δ E pads telescopes

- ΔE layer:
 - 200 µm
 - 60 Pads (4×4 mm²)
 - 62 signals (2 backs + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 6 signals (2 backs + pads)
- 1 Telescope \Longrightarrow 2 GALILEO digitizers
- Commissioning experiment:
 - ¹³C+^{nat}LiF (back. ^{nat}C)
 - Beam at 23 MeV
 - 2 telescopes mounted

GALTRACE: First in-beam test

Up to $412 \times 2 \text{ cm}^2 \text{ E-}\Delta\text{E}$ pads telescopes

- ΔE layer:
 - 200 µm
 - 60 Pads (4×4 mm²)
 - 62 signals (2 backs + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 6 signals (2 backs + pads)
- 1 Telescope \Longrightarrow 2 GALILEO digitizers
- Commissioning experiment:
 - ¹³C+^{nat}LiF (back. ^{nat}C)
 - Beam at 23 MeV
 - 2 telescopes mounted

GALTRACE: First in-beam test

Up to 4 12×2 cm² E- Δ E pads telescopes

- ΔE layer:
 - 200 μm
 - 60 Pads (4×4 mm²)
 - 62 signals (2 backs + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 6 signals (2 backs + pads)
- 1 Telescope \Longrightarrow 2 GALILEO digitizers
- Commissioning experiment:
 - ¹³C+^{nat}LiF (back. ^{nat}C)
 - Beam at 23 MeV
 - 2 telescopes mounted

GALTRACE: First in-beam test

Up to $4.12 \times 2 \text{ cm}^2 \text{ E-}\Delta\text{E}$ pads telescopes

- ΔE layer:
 - 200 µm
 - 60 Pads (4×4 mm²)
 - 62 signals (2 backs + pads)
- E layer:
 - 1000 1500 μm
 - 60 Pads grouped in 4
 - 6 signals (2 backs + pads)
- 1 Telescope \Longrightarrow 2 GALILEO digitizers
- Commissioning experiment:
 - ¹³C+^{nat}LiF (back. ^{nat}C)
 - Beam at 23 MeV
 - 2 telescopes mounted

The GALILEO project - Phase 2

FUROBALL TC + AGATA electronics

- preamplifiers
- digital sampling
- preprocessing
- DAQ

Combination of GASP and EUROBALL detectors

- 25 GASP detectors @ 23.5 cm
- 10 TC detectors @ 23.5 cm

 $\epsilon_{ph}\sim 6.3\%$ @ 1.3 MeV $P/T \sim 50\%$

7.8%

7.8%

7.WK

1

7.WK

7/11/2

23

AGATA coming back

The AGATA time line

AGATA back to LNL:

- From 1π up to 2π HPGe array
- One year shut-down before the installation
- Six months from 2022 of stable beams
- When available RIB from SPES 6 months RIB and 6 months stable beams

Local Project Manager: J.J. Valiente-Dobón

AGATA location @ LNL

First physics workshop for AGATA@LNL with stable beams in March 2019 \implies 60 LoIs distributed in:

- Light Exotic Nuclei and astrophysics
- Nuclear Resonances
- Nuclear Shapes

- Nuclear Shell Structure
- High-spin Physics
- N = Z nuclei
- Nuclear Reactions

All (local) GALILEO ancillaries will be available + possible others

Setup AGATA+PRISMA

SPES Exotic beams for science

The SPES Project goals

- 2nd generation ISOL facility for nuclear physics as part of the EURISOL_DF initiative (ESFRI_2020):
- Production & re-acceleration of exotic beams (neutron rich nuclei $\rightarrow 10^{13}$ f/s)
- Research and Production of Radio-Isotopes for Nuclear Medicine
- Accelerator-based neutron source (Proton and Neutron Facility for Applied physics)

Radioisotpes for medicine

UNIWERSYTET

SPES (a) LNL: Facility for the production of RIB

- New High power compact CYCLOTRON 70 MeV 750 mA
- New configuration of High power ISOL System (8 kW Target ion source)
- ALPI superconductive LINAC (up-graded) for RIB's reacceleration

Low energy experimental area

Room for 3 separate set-ups:

- 1. Beam monitoring station equipped with moving tape system
- 2. In-house set-up for $\beta\text{-decay}$ exp and conversion electron spectrometer: \implies b-DS and SLICES
- 3. Space for bulky equipment for TAS measurement and or $\beta\text{-delayed}$ neutron emission studies

32

Project b-DS + SLICES: Nuclear structure via β decay

- Study of nuclear structure:
 - \Longrightarrow selective tool (selection rules peculiar highlight decay paths)
 - \implies study of evolution of shapes and exotic shapes
 - \implies evolution of magic number \parallel
- Study of β decay properties (T_{1/2}, P_n, BR, S_β, ...) ⇒ strong link to stellar nucleo-synthesis (inputs for r- and s- process)
- Exotic decay modes: PDR via β decay
- Fundamental questions: CKM unitarity via study of super-allowed decays
- Complementary with other approaches
- Simple equipment: a β -decay station (b-DS) @ SPES
- A number of everyday applications of β -decaying sources can be found, for instance, in nuclear medicine, nuclear safety ...

 $_7A_N$

The b-DS β -decay station @ SPES

2 positions served by the same moving tape:

- Large coverage of decay times
- Measurement of $\beta \gamma$ and EO
- Flexibility to add detectors for fast-timing high-energy γ-rays

• EJ212 with SiPM readout

• Simulation and dedicated data analysis tools

- Using b-DS tape system
- Si(Li) detector for e⁻:
 - Diameter = 70 mm (3900 mm²)
 - Thickness = 6.8 mm
 - Segmented in 32 independent sectors
- Magnetic transport system
- Plastic scintillator for β -tagging
- HPGe detector for γ rays

Contact person: A. Nannini - INFN Florence

Test of the resolution at the Jülich Forschungszentrum with a ²⁰⁷Bi source (analog acquisition)

Segment	ACQ time	Shaping	FWHM
	(S)	(µs)	(keV)
2A	1500	6	3.4
A	1500	6	3.7
А	1500	3	2.4

Measurement performed at 975 keV.

Four permanent magnets (NdFeB) assembled around a photon shield.

Simulated efficiency (source-magnets-detector 0-60-125) (CST Particle Studio simulation)

Summary and perspectives

- High resolution γ -ray spectroscopy shed light on new phenomenons
- Strong collaborations between experimental and theoretical nuclear physicists allow to deepen our understanding of the nuclear interaction:
 - Tensor force
 - Key role of the 3N force
 - Importance of the continuum for the description of weakly bound nuclei
- The terra incognita is now getting closer and closer:
 - Pushing back the technical limits of the detection setup (counting rate, efficiency, ...)
 - Radioactive ion beams facility like SPES
- But we should not forget the stable beams:
 - High precision measurements which are important to really constrains the theoretical models
 - Exploring the high energy structure of stable nuclei to look for exotic structures

Conclusions on LNL $\gamma\text{-spectroscopy}$ infrastructure

- GALILEO is the permanent γ -ray spectrometer at LNL
 - Its first implementation, Phase-1, is operational with 25 HPGEs.
 - GALILEO makes use of various ancillary detectors managed at national and international collaborations.
 - First campaign GALILEO Phase-1 since 2015 NW + Euclides + Plunger + LaBr₃ + SPIDER + ...
 - Other campaigns will follow: GALTRACE, RFD, ...
 - It is expected to represent the resident $\gamma\text{-ray}$ spectrometer with the advent of RIBs at SPES.
- Working on the installation of AGATA@LNL:
 - Mechanical infrastructure
 - DAQ and computing farm installation
 - ...
- Development of dedicated setups for the 1⁺ beam lines at SPES:
 - Test of the tape system are promising,
 - First mechanical parts of the b-DS and SLICES chambers are under construction,
 - Test of the detection setups are ongoing.

THANK YOU FOR YOUR ATTENTION!

Special thanks to the GALILEO and GAMMA group and in particular G. Benzoni, A. Nannini, and J.J. Valiente-Dobòn